These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38628571)

  • 1. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices.
    Li Y; Chen Z; Liu Y; Liu Z; Wu T; Zhang Y; Peng L; Huang X; Huang S; Lin X; Xie X; Jiang L
    Natl Sci Rev; 2024 May; 11(5):nwae062. PubMed ID: 38628571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants.
    Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314
    [No Abstract]   [Full Text] [Related]  

  • 3. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces.
    Gutruf P
    Acc Chem Res; 2024 May; 57(9):1275-1286. PubMed ID: 38608256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeing the Animal Model: A Modular, Wirelessly Powered, Implantable Electronic Platform.
    Greene JJ; Gorelik P; Mazor O; Guarin DL; Malk R; Hadlock T
    Plast Reconstr Surg; 2024 Mar; 153(3):568e-572e. PubMed ID: 37184506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a hybrid left ventricular assist device with a new wireless charging system.
    Horie H; Isoyama T; Ishiyama K
    Artif Organs; 2024 Mar; 48(3):309-314. PubMed ID: 37877220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment
    Nakajima K; Kimura T; Takakura H; Yoshikawa Y; Kameda A; Shindo T; Sato K; Kobayashi H; Ogawa M
    Oncotarget; 2018 Apr; 9(28):20048-20057. PubMed ID: 29732002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling.
    Tang SC; Jolesz FA; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications.
    Chandrasekhar A; Alluri NR; Sudhakaran MSP; Mok YS; Kim SJ
    Nanoscale; 2017 Jul; 9(28):9818-9824. PubMed ID: 28485449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.
    Dinis H; Mendes PM
    Biosens Bioelectron; 2021 Jan; 172():112781. PubMed ID: 33160236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless power transfer to deep-tissue microimplants.
    Ho JS; Yeh AJ; Neofytou E; Kim S; Tanabe Y; Patlolla B; Beygui RE; Poon AS
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7974-9. PubMed ID: 24843161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics.
    Becerra-Fajardo L; Krob MO; Minguillon J; Rodrigues C; Welsch C; Tudela-Pi M; Comerma A; Oliveira Barroso F; Schneider A; Ivorra A
    J Neuroeng Rehabil; 2022 Jun; 19(1):57. PubMed ID: 35672857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator.
    Jiang L; Yang Y; Chen R; Lu G; Li R; Li D; Humayun MS; Shung KK; Zhu J; Chen Y; Zhou Q
    Nano Energy; 2019 Feb; 56():216-224. PubMed ID: 31475091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powering Implantable and Ingestible Electronics.
    Yang SY; Sencadas V; You SS; Jia NZ; Srinivasan SS; Huang HW; Ahmed AE; Liang JY; Traverso G
    Adv Funct Mater; 2021 Oct; 31(44):. PubMed ID: 34720792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics.
    Singer A; Robinson JT
    Adv Healthc Mater; 2021 Sep; 10(17):e2100664. PubMed ID: 34114368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.