These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 38628639)

  • 41. DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction.
    Zhu Y; Zhao L; Wen N; Wang J; Wang C
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37688568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fusing Sequence and Structural Knowledge by Heterogeneous Models to Accurately and Interpretively Predict Drug-Target Affinity.
    Zeng X; Zhong KY; Jiang B; Li Y
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network.
    Chen Y; Zhu Y; Zhang Z; Wang J; Wang C
    Methods; 2023 Mar; 211():42-47. PubMed ID: 36804213
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting drug-target binding affinity with cross-scale graph contrastive learning.
    Wang J; Xiao Y; Shang X; Peng J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38221904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HiSIF-DTA: A Hierarchical Semantic Information Fusion Framework for Drug-Target Affinity Prediction.
    Bi X; Zhang S; Ma W; Jiang H; Wei Z
    IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37983161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. miTAR: a hybrid deep learning-based approach for predicting miRNA targets.
    Gu T; Zhao X; Barbazuk WB; Lee JH
    BMC Bioinformatics; 2021 Feb; 22(1):96. PubMed ID: 33639834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequence-based drug-target affinity prediction using weighted graph neural networks.
    Jiang M; Wang S; Zhang S; Zhou W; Zhang Y; Li Z
    BMC Genomics; 2022 Jun; 23(1):449. PubMed ID: 35715739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graph-sequence attention and transformer for predicting drug-target affinity.
    Yan X; Liu Y
    RSC Adv; 2022 Oct; 12(45):29525-29534. PubMed ID: 36320763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of protein-ligand binding affinity with deep learning.
    Wang Y; Jiao Q; Wang J; Cai X; Zhao W; Cui X
    Comput Struct Biotechnol J; 2023; 21():5796-5806. PubMed ID: 38213884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BindingSite-AugmentedDTA: enabling a next-generation pipeline for interpretable prediction models in drug repurposing.
    Yousefi N; Yazdani-Jahromi M; Tayebi A; Kolanthai E; Neal CJ; Banerjee T; Gosai A; Balasubramanian G; Seal S; Ozmen Garibay O
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37096593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SAG-DTA: Prediction of Drug-Target Affinity Using Self-Attention Graph Network.
    Zhang S; Jiang M; Wang S; Wang X; Wei Z; Li Z
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GEFormerDTA: drug target affinity prediction based on transformer graph for early fusion.
    Liu Y; Xing L; Zhang L; Cai H; Guo M
    Sci Rep; 2024 Mar; 14(1):7416. PubMed ID: 38548825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of drug-target binding affinity based on multi-scale feature fusion.
    Yu H; Xu WX; Tan T; Liu Z; Shi JY
    Comput Biol Med; 2024 Aug; 178():108699. PubMed ID: 38870725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
    Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J
    Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism.
    Wang C; Chen Y; Zhao L; Wang J; Wen N
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DGDTA: dynamic graph attention network for predicting drug-target binding affinity.
    Zhai H; Hou H; Luo J; Liu X; Wu Z; Wang J
    BMC Bioinformatics; 2023 Sep; 24(1):367. PubMed ID: 37777712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring.
    Nguyen TM; Nguyen T; Tran T
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35788823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Multibranch Neural Network for Drug-Target Affinity Prediction Using Similarity Information.
    Chen J; Yang X; Wu H
    ACS Omega; 2024 Aug; 9(33):35978-35989. PubMed ID: 39184467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.