These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38629752)
1. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries. Tracy JS; Broderick CH; Toste FD J Am Chem Soc; 2024 May; 146(17):11740-11755. PubMed ID: 38629752 [TBL] [Abstract][Full Text] [Related]
2. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Walser-Kuntz R; Yan Y; Sigman M; Sanford MS Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181 [TBL] [Abstract][Full Text] [Related]
4. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070 [TBL] [Abstract][Full Text] [Related]
6. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Yan Y; Robinson SG; Sigman MS; Sanford MS J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480 [TBL] [Abstract][Full Text] [Related]
7. From Squaric Acid Amides (SQAs) to Quinoxaline-Based SQAs─Evolution of a Redox-Active Cathode Material for Organic Polymer Batteries. Baumert ME; Le V; Su PH; Akae Y; Bresser D; Théato P; Hansmann MM J Am Chem Soc; 2023 Oct; 145(42):23334-23345. PubMed ID: 37823604 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. Mitchell NH; Elgrishi N J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204 [TBL] [Abstract][Full Text] [Related]
9. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
10. Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. Sevov CS; Fisher SL; Thompson LT; Sanford MS J Am Chem Soc; 2016 Nov; 138(47):15378-15384. PubMed ID: 27933936 [TBL] [Abstract][Full Text] [Related]
13. Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. Chen Q; Li Y; Liu Y; Sun P; Yang Z; Xu T ChemSusChem; 2021 Mar; 14(5):1295-1301. PubMed ID: 33200881 [TBL] [Abstract][Full Text] [Related]
14. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Tracy JS; Horst ES; Roytman VA; Toste FD Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695 [TBL] [Abstract][Full Text] [Related]
15. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
16. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Gao M; Salla M; Song Y; Wang Q Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142 [TBL] [Abstract][Full Text] [Related]