These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38629782)

  • 1. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency.
    Sedenho GC; Nascimento SQ; Zamani M; Crespilho FN; Furst AL
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402234. PubMed ID: 38629782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states.
    Serrano-Posada H; Centeno-Leija S; Rojas-Trejo SP; Rodríguez-Almazán C; Stojanoff V; Rudiño-Piñera E
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2396-411. PubMed ID: 26627648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods.
    Li J; Farrokhnia M; Rulíšek L; Ryde U
    J Phys Chem B; 2015 Jul; 119(26):8268-84. PubMed ID: 26039490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the O2 reduction mechanism of multicopper oxidase.
    Komori H; Higuchi Y
    J Biochem; 2015 Oct; 158(4):293-8. PubMed ID: 26272825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.
    Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH
    FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases.
    Sekretareva A; Tian S; Gounel S; Mano N; Solomon EI
    J Am Chem Soc; 2021 Oct; 143(41):17236-17249. PubMed ID: 34633193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships.
    Gräff M; Buchholz PCF; Le Roes-Hill M; Pleiss J
    Proteins; 2020 Oct; 88(10):1329-1339. PubMed ID: 32447824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial biomimetics. optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy.
    Weng YC; Fan FR; Bard AJ
    J Am Chem Soc; 2005 Dec; 127(50):17576-7. PubMed ID: 16351066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward synthetic analogues of linked redox and catalytic multimetal sites in proteins: a model of the histidine-cysteine bridged dicopper array.
    Lee WZ; Tolman WB
    Inorg Chem; 2002 Nov; 41(22):5656-8. PubMed ID: 12401068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined quantum and molecular mechanical study of the O2 reductive cleavage in the catalytic cycle of multicopper oxidases.
    Rulísek L; Solomon EI; Ryde U
    Inorg Chem; 2005 Aug; 44(16):5612-28. PubMed ID: 16060610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O
    Sekretaryova A; Jones SM; Solomon EI
    J Am Chem Soc; 2019 Jul; 141(28):11304-11314. PubMed ID: 31260290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper as a robust and transparent electrocatalyst for water oxidation.
    Du J; Chen Z; Ye S; Wiley BJ; Meyer TJ
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2073-8. PubMed ID: 25581365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 reduction to H2O by the multicopper oxidases.
    Solomon EI; Augustine AJ; Yoon J
    Dalton Trans; 2008 Aug; (30):3921-32. PubMed ID: 18648693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The copper-poly-L-histidine complex. I. The environmental effect of the polyelectrolyte on the oxidase activity of copper ions.
    Pecht I; Levitzki A; Anbar M
    J Am Chem Soc; 1967 Mar; 89(7):1587-91. PubMed ID: 6039296
    [No Abstract]   [Full Text] [Related]  

  • 16. Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts.
    Kervinen K; Bruijnincx PC; Beale AM; Mesu JG; van Koten G; Klein Gebbink RJ; Weckhuysen BM
    J Am Chem Soc; 2006 Mar; 128(10):3208-17. PubMed ID: 16522101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction.
    Xi YT; Wei PJ; Wang RC; Liu JG
    Chem Commun (Camb); 2015 May; 51(35):7455-8. PubMed ID: 25825826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of a dodecameric multicopper oxidase from Marinithermus hydrothermalis.
    Paavola JL; Battistin U; Ogata CM; Georgiadis MM
    Acta Crystallogr D Struct Biol; 2021 Oct; 77(Pt 10):1336-1345. PubMed ID: 34605435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.
    Butterfield CN; Tebo BM
    Metallomics; 2017 Feb; 9(2):183-191. PubMed ID: 28128836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.