These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38629782)

  • 21. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene.
    Kim C; Lorenz WW; Hoopes JT; Dean JF
    J Bacteriol; 2001 Aug; 183(16):4866-75. PubMed ID: 11466290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5-7 CueO.
    Kataoka K; Hirota S; Maeda Y; Kogi H; Shinohara N; Sekimoto M; Sakurai T
    Biochemistry; 2011 Feb; 50(4):558-65. PubMed ID: 21142169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling dioxygen reduction at multicopper oxidase cathodes.
    Agbo P; Heath JR; Gray HB
    J Am Chem Soc; 2014 Oct; 136(39):13882-7. PubMed ID: 25188422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence.
    Singh SK; Roberts SA; McDevitt SF; Weichsel A; Wildner GF; Grass GB; Rensing C; Montfort WR
    J Biol Chem; 2011 Oct; 286(43):37849-57. PubMed ID: 21903583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shall we dance? How a multicopper oxidase chooses its electron transfer partner.
    Quintanar L; Stoj C; Taylor AB; Hart PJ; Kosman DJ; Solomon EI
    Acc Chem Res; 2007 Jun; 40(6):445-52. PubMed ID: 17425282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired Trinuclear Copper Catalyst for Water Oxidation with a Turnover Frequency up to 20000 s
    Chen QF; Cheng ZY; Liao RZ; Zhang MT
    J Am Chem Soc; 2021 Dec; 143(47):19761-19768. PubMed ID: 34793144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional study on cysteine 495, coordinating ligand to T1Cu site in multicopper oxidase CopA.
    Tang W; Liu H; Zeng X
    Chemosphere; 2021 Oct; 281():130807. PubMed ID: 34022605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A soluble copper-bipyridine water-oxidation electrocatalyst.
    Barnett SM; Goldberg KI; Mayer JM
    Nat Chem; 2012 May; 4(6):498-502. PubMed ID: 22614386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology.
    Kosman DJ
    J Biol Inorg Chem; 2010 Jan; 15(1):15-28. PubMed ID: 19816718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis.
    Gerlach DL; Bhagan S; Cruce AA; Burks DB; Nieto I; Truong HT; Kelley SP; Herbst-Gervasoni CJ; Jernigan KL; Bowman MK; Pan S; Zeller M; Papish ET
    Inorg Chem; 2014 Dec; 53(24):12689-98. PubMed ID: 25427106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase.
    Silva CS; Durão P; Fillat A; Lindley PF; Martins LO; Bento I
    Metallomics; 2012 Jan; 4(1):37-47. PubMed ID: 22127520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition dynamics of trinuclear copper cluster and associated histidine residues through conserved or semi-conserved water molecules in human Ceruloplasmin: The involvement of aspartic and glutamic acid gates.
    Mukhopadhyay BP
    J Biomol Struct Dyn; 2018 Nov; 36(14):3829-3842. PubMed ID: 29148316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced moisture resistance of Cu/Ce catalysts for CO oxidation via Plasma-Catalyst interactions.
    Zhang J; Liu Y; Yao X; Shao Q; Xu B; Long C
    Chemosphere; 2020 Dec; 261():127739. PubMed ID: 32717516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nature of the intermediate formed in the reduction of O(2) to H(2)O at the trinuclear copper cluster active site in native laccase.
    Lee SK; George SD; Antholine WE; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2002 May; 124(21):6180-93. PubMed ID: 12022853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical Study of O
    Siegbahn PEM
    J Phys Chem A; 2020 Jul; 124(28):5849-5855. PubMed ID: 32579359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidase Reactivity of Cu
    Bacchella C; Dell'Acqua S; Nicolis S; Monzani E; Casella L
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution.
    Cui S; Qian M; Liu X; Sun Z; Du P
    ChemSusChem; 2016 Sep; 9(17):2365-73. PubMed ID: 27530422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi.
    Glazunova OA; Polyakov KM; Moiseenko KV; Kurzeev SA; Fedorova TV
    Int J Biol Macromol; 2018 Oct; 118(Pt A):406-418. PubMed ID: 29890251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-inspired design of electrocatalysts for oxalate oxidation: a combined experimental and computational study of Mn-N-C catalysts.
    Matanovic I; Babanova S; Perry A; Serov A; Artyushkova K; Atanassov P
    Phys Chem Chem Phys; 2015 May; 17(20):13235-44. PubMed ID: 25785903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.