BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38629940)

  • 1. Conduction Band Replicas in a 2D Moiré Semiconductor Heterobilayer.
    Graham AJ; Park H; Nguyen PV; Nunn J; Kandyba V; Cattelan M; Giampietri A; Barinov A; Watanabe K; Taniguchi T; Andreev A; Rudner M; Xu X; Wilson NR; Cobden DH
    Nano Lett; 2024 May; 24(17):5117-5124. PubMed ID: 38629940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signatures of moiré-trapped valley excitons in MoSe
    Seyler KL; Rivera P; Yu H; Wilson NP; Ray EL; Mandrus DG; Yan J; Yao W; Xu X
    Nature; 2019 Mar; 567(7746):66-70. PubMed ID: 30804526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures.
    Wilson NR; Nguyen PV; Seyler K; Rivera P; Marsden AJ; Laker ZP; Constantinescu GC; Kandyba V; Barinov A; Hine ND; Xu X; Cobden DH
    Sci Adv; 2017 Feb; 3(2):e1601832. PubMed ID: 28246636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS
    Waters D; Nie Y; Lüpke F; Pan Y; Fölsch S; Lin YC; Jariwala B; Zhang K; Wang C; Lv H; Cho K; Xiao D; Robinson JA; Feenstra RM
    ACS Nano; 2020 Jun; 14(6):7564-7573. PubMed ID: 32496750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for moiré excitons in van der Waals heterostructures.
    Tran K; Moody G; Wu F; Lu X; Choi J; Kim K; Rai A; Sanchez DA; Quan J; Singh A; Embley J; Zepeda A; Campbell M; Autry T; Taniguchi T; Watanabe K; Lu N; Banerjee SK; Silverman KL; Kim S; Tutuc E; Yang L; MacDonald AH; Li X
    Nature; 2019 Mar; 567(7746):71-75. PubMed ID: 30804527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary Phonon Displacement and Giant Resonance Raman Enhancement in WSe
    Rahman S; Sun X; Zhu Y; Lu Y
    ACS Nano; 2022 Dec; 16(12):21505-21517. PubMed ID: 36441581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe
    Geng WT; Wang V; Liu YC; Ohno T; Nara J
    J Phys Chem Lett; 2020 Apr; 11(7):2637-2646. PubMed ID: 32188242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices.
    Zheng H; Wu B; Li S; Ding J; He J; Liu Z; Wang CT; Wang JT; Pan A; Liu Y
    Light Sci Appl; 2023 May; 12(1):117. PubMed ID: 37173297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flattening conduction and valence bands for interlayer excitons in a moiré MoS
    Conti S; Chaves A; Pandey T; Covaci L; Peeters FM; Neilson D; Milošević MV
    Nanoscale; 2023 Sep; 15(34):14032-14042. PubMed ID: 37575033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valley Relaxation of the Moiré Excitons in a WSe
    Shinokita K; Watanabe K; Taniguchi T; Matsuda K
    ACS Nano; 2022 Oct; 16(10):16862-16868. PubMed ID: 36169188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of moiré excitons in WSe
    Jin C; Regan EC; Yan A; Iqbal Bakti Utama M; Wang D; Zhao S; Qin Y; Yang S; Zheng Z; Shi S; Watanabe K; Taniguchi T; Tongay S; Zettl A; Wang F
    Nature; 2019 Mar; 567(7746):76-80. PubMed ID: 30804525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy.
    Li Y; Wan Q; Xu N
    Adv Mater; 2023 Sep; ():e2305175. PubMed ID: 37689836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of twist-angle-dependent excitons in WS
    Wu K; Zhong H; Guo Q; Tang J; Zhang J; Qian L; Shi Z; Zhang C; Yuan S; Zhang S; Xu H
    Natl Sci Rev; 2022 Jun; 9(6):nwab135. PubMed ID: 35795458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS
    Pan Y; Fölsch S; Nie Y; Waters D; Lin YC; Jariwala B; Zhang K; Cho K; Robinson JA; Feenstra RM
    Nano Lett; 2018 Mar; 18(3):1849-1855. PubMed ID: 29415536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twist-angle dependence of moiré excitons in WS
    Zhang L; Zhang Z; Wu F; Wang D; Gogna R; Hou S; Watanabe K; Taniguchi T; Kulkarni K; Kuo T; Forrest SR; Deng H
    Nat Commun; 2020 Nov; 11(1):5888. PubMed ID: 33208738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong interlayer interactions in bilayer and trilayer moiré superlattices.
    Xie S; Faeth BD; Tang Y; Li L; Gerber E; Parzyck CT; Chowdhury D; Zhang YH; Jozwiak C; Bostwick A; Rotenberg E; Kim EA; Shan J; Mak KF; Shen KM
    Sci Adv; 2022 Mar; 8(12):eabk1911. PubMed ID: 35333575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridized bands and stacking-dependent band edges in ferromagnetic Fe
    Ko E
    Sci Rep; 2022 Mar; 12(1):5101. PubMed ID: 35332178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Band Gap and Work Function Modulations in Monolayer hBN/Cu(111) Heterostructures with Moiré Patterns.
    Zhang Q; Yu J; Ebert P; Zhang C; Pan CR; Chou MY; Shih CK; Zeng C; Yuan S
    ACS Nano; 2018 Sep; 12(9):9355-9362. PubMed ID: 30107116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent Moiré Phonons Due to Zone Folding in WSe
    Chuang HJ; Phillips M; McCreary KM; Wickramaratne D; Rosenberger MR; Oleshko VP; Proscia NV; Lohmann M; O'Hara DJ; Cunningham PD; Hellberg CS; Jonker BT
    ACS Nano; 2022 Oct; 16(10):16260-16270. PubMed ID: 36223545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene.
    Hamer MJ; Giampietri A; Kandyba V; Genuzio F; Menteş TO; Locatelli A; Gorbachev RV; Barinov A; Mucha-Kruczyński M
    ACS Nano; 2022 Feb; 16(2):1954-1962. PubMed ID: 35073479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.