These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38630080)

  • 21. Disorder-Induced Broadband Near-Infrared Persistent and Photostimulated Luminescence in Mg
    Xie W; Jiang W; Zhou R; Li J; Ding J; Ni H; Zhang Q; Tang Q; Meng JX; Lin L
    Inorg Chem; 2021 Feb; 60(4):2219-2227. PubMed ID: 33507746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enabling Visible-Light-Charged Near-Infrared Persistent Luminescence in Organics by Intermolecular Charge Transfer.
    Lin C; Wu Z; Ueda J; Yang R; You S; Lv A; Deng W; Du Q; Li R; An Z; Xue J; Zhuang Y; Xie RJ
    Adv Mater; 2024 Aug; 36(31):e2401000. PubMed ID: 38773688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tin-Doped Near-Infrared Persistent Luminescence Nanoparticles with Considerable Improvement of Biological Window Activation for Deep Tumor Photodynamic Therapy.
    Shi J; Sun X; Zheng S; Song L; Zhang F; Madl T; Zhang Y; Zhang H; Hong M
    ACS Appl Bio Mater; 2020 Sep; 3(9):5995-6004. PubMed ID: 35021828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Light and X-ray Charging in Persistent Luminescence Nanoparticle Scintillators Zn
    Jiang X; Gao X; Li L; Zhou P; Wang S; Liu T; Zhou J; Zhang H; Huang K; Li Y; Wang M; Jin Z; Xie E; Liu W; Han G
    ACS Appl Mater Interfaces; 2023 May; 15(17):21228-21238. PubMed ID: 37078901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality
    Wang J; Sun X; Xu J; Liu L; Lin P; Luo X; Gao Y; Shi J; Zhang Y
    Biomater Sci; 2024 Jul; 12(15):3841-3850. PubMed ID: 38881248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.
    Sun L; Qiu Y; Liu T; Feng J; Deng W; Shi L
    Luminescence; 2015 Nov; 30(7):1071-6. PubMed ID: 25691149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZGSO Spinel Nanoparticles with Dual Emission of NIR Persistent Luminescence for Anti-Counterfeiting Applications.
    Cai G; Delgado T; Richard C; Viana B
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.
    Li Y; Chen C; Liu F; Liu J
    Mikrochim Acta; 2022 Feb; 189(3):109. PubMed ID: 35175435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Achieving Persistent Luminescence Performance Based on the Cation-Tunable Trap Distribution.
    Wang T; Li R; Zhang M; Li P; Wang Z
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled optical characteristics of lanthanide doped upconversion nanoparticles for emerging applications.
    Ge X; Liu J; Sun L
    Dalton Trans; 2017 Dec; 46(48):16729-16737. PubMed ID: 29125162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cr
    Xu J; Murata D; Katayama Y; Ueda J; Tanabe S
    J Mater Chem B; 2017 Aug; 5(31):6385-6393. PubMed ID: 32264455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared persistent luminescence of Yb
    Zou Z; Wu C; Li X; Zhang J; Li H; Wang D; Wang Y
    Opt Lett; 2017 Nov; 42(21):4510-4512. PubMed ID: 29088200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistent Luminescence Lifetime-Based Near-Infrared Nanoplatform via Deep Learning for High-Fidelity Biosensing of Hypochlorite.
    Feng Y; Yang X; Rao Q; Zhang L; Su Y; Lv Y
    Anal Chem; 2024 May; 96(18):7240-7247. PubMed ID: 38661330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal Ions Doping for Boosting Luminescence of Lanthanide-Doped Nanocrystals.
    Pei S; Ge X; Sun L
    Front Chem; 2020; 8():610481. PubMed ID: 33364228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics.
    Hong Z; Chen Z; Chen Q; Yang H
    Acc Chem Res; 2023 Jan; 56(1):37-51. PubMed ID: 36533853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Making sense of lanthanide luminescence.
    Werts MH
    Sci Prog; 2005; 88(Pt 2):101-31. PubMed ID: 16749431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prolonged Red Persistent Luminescence in Bi
    Yi Z; Liu P; Liu X; Xu Y
    Inorg Chem; 2023 Dec; 62(48):19542-19551. PubMed ID: 37971901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lanthanide-Doped Core@Multishell Nanoarchitectures: Multimodal Excitable Upconverting/Downshifting Luminescence and High-Level Anti-Counterfeiting.
    Huang H; Chen J; Liu Y; Lin J; Wang S; Huang F; Chen D
    Small; 2020 May; 16(19):e2000708. PubMed ID: 32307877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in the anti-counterfeiting applications of long persistent phosphors.
    Kuang Q; Hou X; Du C; Wang X; Gao D
    Phys Chem Chem Phys; 2023 Jul; 25(27):17759-17768. PubMed ID: 37377090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Efficiency and Wavelength-Tunable Near-Infrared Emission of Lanthanide Ions Doped Lead-Free Halide Double Perovskite Nanocrystals toward Fluorescence Imaging.
    Zhao J; Pan G; Zhu Y; Liu K; You W; Chen X; Song H; Mao Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42215-42222. PubMed ID: 36093569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.