These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38630182)
21. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.). Prasad AA; Babu S An Acad Bras Cienc; 2017; 89(2):1027-1040. PubMed ID: 28489199 [TBL] [Abstract][Full Text] [Related]
22. Impact of Culturable Endophytic Bacteria on Soil Aggregate Formation and Peanut (Arachis hypogaea L.) Growth and Yield Under Drought Conditions. Prasanna Kumar B; Trimurtulu N; Vijaya Gopal A; Nagaraju Y Curr Microbiol; 2022 Sep; 79(10):308. PubMed ID: 36088515 [TBL] [Abstract][Full Text] [Related]
23. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Sulochana MB; Jayachandra SY; Kumar SA; Parameshwar AB; Reddy KM; Dayanand A Appl Biochem Biotechnol; 2014 Sep; 174(1):297-308. PubMed ID: 25062779 [TBL] [Abstract][Full Text] [Related]
24. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Paulucci NS; Gallarato LA; Reguera YB; Vicario JC; Cesari AB; García de Lema MB; Dardanelli MS Microbiol Res; 2015 Apr; 173():1-9. PubMed ID: 25801965 [TBL] [Abstract][Full Text] [Related]
25. Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility. Urooj N; Bano A; Riaz A Int J Phytoremediation; 2022; 24(6):567-579. PubMed ID: 34505549 [TBL] [Abstract][Full Text] [Related]
27. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Santoro MV; Cappellari LR; Giordano W; Banchio E Plant Biol (Stuttg); 2015 Nov; 17(6):1218-26. PubMed ID: 26012535 [TBL] [Abstract][Full Text] [Related]
28. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Wang N; Wang T; Chen Y; Wang M; Lu Q; Wang K; Dou Z; Chi Z; Qiu W; Dai J; Niu L; Cui J; Wei Z; Zhang F; Kümmerli R; Zuo Y Nat Commun; 2024 Jan; 15(1):839. PubMed ID: 38287073 [TBL] [Abstract][Full Text] [Related]
29. Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. Kumawat KC; Sharma P; Sirari A; Singh I; Gill BS; Singh U; Saharan K World J Microbiol Biotechnol; 2019 Mar; 35(3):47. PubMed ID: 30834977 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Pandey S; Gupta S Sci Rep; 2020 Dec; 10(1):20951. PubMed ID: 33262413 [TBL] [Abstract][Full Text] [Related]
31. Isolation and identification of multi-trait plant growth-promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Moon YS; Ali S Folia Microbiol (Praha); 2022 Jun; 67(3):523-533. PubMed ID: 35211835 [TBL] [Abstract][Full Text] [Related]
32. Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Goswami D; Dhandhukia P; Patel P; Thakker JN Microbiol Res; 2014 Jan; 169(1):66-75. PubMed ID: 23896166 [TBL] [Abstract][Full Text] [Related]
33. Biological Control of Chili Damping-Off Disease, Caused by Hyder S; Gondal AS; Rizvi ZF; Atiq R; Haider MIS; Fatima N; Inam-Ul-Haq M Front Microbiol; 2021; 12():587431. PubMed ID: 34054741 [No Abstract] [Full Text] [Related]
34. Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Abbaszadeh-Dahaji P; Atajan FA; Omidvari M; Tahan V; Kariman K Curr Microbiol; 2021 Apr; 78(4):1335-1343. PubMed ID: 33646377 [TBL] [Abstract][Full Text] [Related]
35. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Kisiel A; Kępczyńska E Planta; 2016 May; 243(5):1169-89. PubMed ID: 26861677 [TBL] [Abstract][Full Text] [Related]
36. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere. Liu J; Wang X; Zhang T; Li X Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837 [TBL] [Abstract][Full Text] [Related]
37. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed ( Mohsen E; El-Metwally MA; Ibrahim AA; Soliman MI Sci Prog; 2023; 106(2):368504231176165. PubMed ID: 37226455 [TBL] [Abstract][Full Text] [Related]
38. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Mehta P; Walia A; Kulshrestha S; Chauhan A; Shirkot CK J Basic Microbiol; 2015 Jan; 55(1):33-44. PubMed ID: 24464353 [TBL] [Abstract][Full Text] [Related]
40. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. Song C; Wang W; Gan Y; Wang L; Chang X; Wang Y; Yang W J Sci Food Agric; 2022 Mar; 102(4):1430-1442. PubMed ID: 34389997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]