These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38630581)

  • 1. Protein Engineering with Lightweight Graph Denoising Neural Networks.
    Zhou B; Zheng L; Wu B; Tan Y; Lv O; Yi K; Fan G; Hong L
    J Chem Inf Model; 2024 May; 64(9):3650-3661. PubMed ID: 38630581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning.
    Shroff R; Cole AW; Diaz DJ; Morrow BR; Donnell I; Annapareddy A; Gollihar J; Ellington AD; Thyer R
    ACS Synth Biol; 2020 Nov; 9(11):2927-2935. PubMed ID: 33064458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning.
    Zhou Z; Zhang L; Yu Y; Wu B; Li M; Hong L; Tan P
    Nat Commun; 2024 Jul; 15(1):5566. PubMed ID: 38956442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Design Using Structure-Prediction Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models.
    Wang J; Watson JL; Lisanza SL
    Cold Spring Harb Perspect Biol; 2024 Jul; 16(7):. PubMed ID: 38438190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolution Neural Network-Based Prediction of Protein Thermostability.
    Fang X; Huang J; Zhang R; Wang F; Zhang Q; Li G; Yan J; Zhang H; Yan Y; Xu L
    J Chem Inf Model; 2019 Nov; 59(11):4833-4843. PubMed ID: 31657922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PYTHIA: Deep Learning Approach for Local Protein Conformation Prediction.
    Cretin G; Galochkina T; de Brevern AG; Gelly JC
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified rational protein engineering with sequence-based deep representation learning.
    Alley EC; Khimulya G; Biswas S; AlQuraishi M; Church GM
    Nat Methods; 2019 Dec; 16(12):1315-1322. PubMed ID: 31636460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs.
    Kong L; Ju F; Zheng WM; Zhu J; Sun S; Xu J; Bu D
    J Comput Biol; 2022 Feb; 29(2):92-105. PubMed ID: 35073170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction.
    Wang Z; Combs SA; Brand R; Calvo MR; Xu P; Price G; Golovach N; Salawu EO; Wise CJ; Ponnapalli SP; Clark PM
    Sci Rep; 2022 Apr; 12(1):6832. PubMed ID: 35477726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation.
    Lim J; Ryu S; Park K; Choe YJ; Ham J; Kim WY
    J Chem Inf Model; 2019 Sep; 59(9):3981-3988. PubMed ID: 31443612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the local landscape of protein structures with convolutional neural networks.
    Kulikova AV; Diaz DJ; Loy JM; Ellington AD; Wilke CO
    J Biol Phys; 2021 Dec; 47(4):435-454. PubMed ID: 34751854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the Effect of Single and Multiple Mutations on Protein Structural Stability.
    Dehghanpoor R; Ricks E; Hursh K; Gunderson S; Farhoodi R; Haspel N; Hutchinson B; Jagodzinski F
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29382060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ECNet is an evolutionary context-integrated deep learning framework for protein engineering.
    Luo Y; Jiang G; Yu T; Liu Y; Vo L; Ding H; Su Y; Qian WW; Zhao H; Peng J
    Nat Commun; 2021 Sep; 12(1):5743. PubMed ID: 34593817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural networks to learn protein sequence-function relationships from deep mutational scanning data.
    Gelman S; Fahlberg SA; Heinzelman P; Romero PA; Gitter A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.