BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38630611)

  • 1. Metagenomics: key to human gut microbiota.
    Maccaferri S; Biagi E; Brigidi P
    Dig Dis; 2011; 29(6):525-30. PubMed ID: 22179207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomics of the human gut mycobiome.
    Faial T
    Nat Genet; 2024 Jun; 56(6):1038. PubMed ID: 38871865
    [No Abstract]   [Full Text] [Related]  

  • 3. TARO: tree-aggregated factor regression for microbiome data integration.
    Mishra AK; Mahmud I; Lorenzi PL; Jenq RR; Wargo JA; Ajami NJ; Peterson CB
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38788190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing human microbiomes for disease prediction.
    Liu Y; Fachrul M; Inouye M; Méric G
    Trends Microbiol; 2024 Jul; 32(7):707-719. PubMed ID: 38246848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current state and perspective of implementation of clinical metagenomics: Geneva ICCMg meeting report.
    Ruppé E; Lazarevic V; Schrenzel J
    Trends Microbiol; 2024 May; 32(5):411-414. PubMed ID: 38580608
    [No Abstract]   [Full Text] [Related]  

  • 6. Deep learning methods in metagenomics: a review.
    Roy G; Prifti E; Belda E; Zucker JD
    Microb Genom; 2024 Apr; 10(4):. PubMed ID: 38630611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data.
    Rahman MA; Rangwala H
    Bioinformatics; 2020 Jul; 36(Suppl_1):i39-i47. PubMed ID: 32657370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.
    Curry KD; Nute MG; Treangen TJ
    Emerg Top Life Sci; 2021 Dec; 5(6):815-827. PubMed ID: 34779841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Functional Annotation of Metagenomes and Microbial Genomes Using a Deep Learning-Based Method.
    Maranga M; Szczerbiak P; Bezshapkin V; Gligorijevic V; Chandler C; Bonneau R; Xavier RJ; Vatanen T; Kosciolek T
    mSystems; 2023 Apr; 8(2):e0117822. PubMed ID: 37010293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and metagenomics in intestinal diseases.
    Lin Y; Wang G; Yu J; Sung JJY
    J Gastroenterol Hepatol; 2021 Apr; 36(4):841-847. PubMed ID: 33880764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable and accurate prediction models for metagenomics data.
    Prifti E; Chevaleyre Y; Hanczar B; Belda E; Danchin A; Clément K; Zucker JD
    Gigascience; 2020 Mar; 9(3):. PubMed ID: 32150601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-free prediction of microbiome compositions.
    Asher EE; Bashan A
    Microbiome; 2024 Feb; 12(1):17. PubMed ID: 38303006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning and deep learning applications in microbiome research.
    Hernández Medina R; Kutuzova S; Nielsen KN; Johansen J; Hansen LH; Nielsen M; Rasmussen S
    ISME Commun; 2022 Oct; 2(1):98. PubMed ID: 37938690
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.