These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38630963)

  • 1. Dynamic cerebral autoregulation is governed by two time constants: Arterial transit time and feedback time constant.
    Payne SJ
    J Physiol; 2024 May; 602(9):1953-1966. PubMed ID: 38630963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined transfer function analysis and modelling of cerebral autoregulation.
    Payne SJ; Tarassenko L
    Ann Biomed Eng; 2006 May; 34(5):847-58. PubMed ID: 16708269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating spatial variations in dynamic cerebral autoregulation through a computational model of stenosis.
    Tong Z; Payne SJ
    Physiol Meas; 2023 Apr; 44(4):. PubMed ID: 37015230
    [No Abstract]   [Full Text] [Related]  

  • 4. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.
    Hu K; Peng CK; Czosnyka M; Zhao P; Novak V
    Cardiovasc Eng; 2008 Mar; 8(1):60-71. PubMed ID: 18080758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations.
    Elting JWJ; Tas J; Aries MJ; Czosnyka M; Maurits NM
    J Cereb Blood Flow Metab; 2020 Jan; 40(1):135-149. PubMed ID: 30353763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomic neuropathy is associated with impairment of dynamic cerebral autoregulation in type 1 diabetes.
    Nasr N; Czosnyka M; Arevalo F; Hanaire H; Guidolin B; Larrue V
    Auton Neurosci; 2011 Feb; 160(1-2):59-63. PubMed ID: 21036672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults.
    Whitaker AA; Aaron SE; Chertoff M; Brassard P; Buchanan J; Nguyen K; Vidoni ED; Waghmare S; Eickmeyer SM; Montgomery RN; Billinger SA
    J Appl Physiol (1985); 2024 Apr; 136(4):707-720. PubMed ID: 38357728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation.
    Perry BG; Cotter JD; Korad S; Lark S; Labrecque L; Brassard P; Paquette M; Le Blanc O; Lucas SJE
    Exp Physiol; 2019 Dec; 104(12):1780-1789. PubMed ID: 31549452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new mathematical model of dynamic cerebral autoregulation based on a flow dependent feedback mechanism.
    Kirkham SK; Craine RE; Birch AA
    Physiol Meas; 2001 Aug; 22(3):461-73. PubMed ID: 11556667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired cerebral autoregulation: measurement and application to stroke.
    Xiong L; Liu X; Shang T; Smielewski P; Donnelly J; Guo ZN; Yang Y; Leung T; Czosnyka M; Zhang R; Liu J; Wong KS
    J Neurol Neurosurg Psychiatry; 2017 Jun; 88(6):520-531. PubMed ID: 28536207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Brief Review of Brain's Blood Flow-Metabolism Coupling and Pressure Autoregulation.
    Papasilekas T; Themistoklis KM; Melanis K; Patrikelis P; Spartalis E; Korfias S; Sakas D
    J Neurol Surg A Cent Eur Neurosurg; 2021 May; 82(3):257-261. PubMed ID: 33583012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation.
    Petersen NH; Ortega-Gutierrez S; Reccius A; Masurkar A; Huang A; Marshall RS
    Neurocrit Care; 2014 Feb; 20(1):60-8. PubMed ID: 24452959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke.
    Petersen NH; Ortega-Gutierrez S; Reccius A; Masurkar A; Huang A; Marshall RS
    Cerebrovasc Dis; 2015; 39(2):144-50. PubMed ID: 25661277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network-based model of dynamic cerebral autoregulation.
    Daher A; Payne S
    Microvasc Res; 2023 May; 147():104503. PubMed ID: 36773930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of static and dynamic cerebral autoregulation under anesthesia influence in a controlled animal model.
    Ruesch A; Acharya D; Schmitt S; Yang J; Smith MA; Kainerstorfer JM
    PLoS One; 2021; 16(1):e0245291. PubMed ID: 33418561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-objective optimisation approach for the linear modelling of cerebral autoregulation system.
    Bello-Robles FA; Villalobos-Cid M; Chacón M; Inostroza-Ponta M
    Biosystems; 2024 Jul; 241():105231. PubMed ID: 38754621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonstationarity of dynamic cerebral autoregulation.
    Panerai RB
    Med Eng Phys; 2014 May; 36(5):576-84. PubMed ID: 24113077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Modelling cerebrovascular circulation from the viewpoint of autoregulation mechanisms].
    Cieślicki K; Cieśla D; Ciszek B
    Neurol Neurochir Pol; 2000; 34(5):959-71. PubMed ID: 11253484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.