BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38631116)

  • 1. Fuzzy machine learning logic utilization on hormonal imbalance dataset.
    Khushal R; Fatima U
    Comput Biol Med; 2024 May; 174():108429. PubMed ID: 38631116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of PCOS and Mental Health Using Fuzzy Inference and SVM.
    Kodipalli A; Devi S
    Front Public Health; 2021; 9():789569. PubMed ID: 34917583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Software Development Effort Estimation Using Regression Fuzzy Models.
    Nassif AB; Azzeh M; Idri A; Abran A
    Comput Intell Neurosci; 2019; 2019():8367214. PubMed ID: 30915110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models.
    Silva IS; Ferreira CN; Costa LBX; Sóter MO; Carvalho LML; de C Albuquerque J; Sales MF; Candido AL; Reis FM; Veloso AA; Gomes KB
    J Endocrinol Invest; 2022 Mar; 45(3):497-505. PubMed ID: 34524677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review.
    Barrera FJ; Brown EDL; Rojo A; Obeso J; Plata H; Lincango EP; Terry N; Rodríguez-Gutiérrez R; Hall JE; Shekhar S
    Front Endocrinol (Lausanne); 2023; 14():1106625. PubMed ID: 37790605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning classification of polycystic ovary syndrome based on radial pulse wave analysis.
    Lim J; Li J; Feng X; Feng L; Xia Y; Xiao X; Wang Y; Xu Z
    BMC Complement Med Ther; 2023 Nov; 23(1):409. PubMed ID: 37957660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System.
    Chidambaram S; Ganesh SS; Karthick A; Jayagopal P; Balachander B; Manoharan S
    Comput Math Methods Med; 2022; 2022():9166873. PubMed ID: 35602339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of mitochondrial biomarkers and immune dynamics in polycystic ovary syndrome.
    Shen HH; Zhang YY; Wang XY; Li MY; Liu ZX; Wang Y; Ye JF; Wu HH; Li MQ
    Am J Reprod Immunol; 2024 Apr; 91(4):e13847. PubMed ID: 38661639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the quality of hospital sterilization process using failure modes and effects analysis, fuzzy logic, and machine learning: experience in tertiary dental centre.
    En-Naaoui A; Aguezzoul A; Kaicer M
    Int J Qual Health Care; 2023 Oct; 35(4):. PubMed ID: 37757481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy Classification Methods Based Diagnosis of Parkinson's disease from Speech Test Cases.
    Dastjerd NK; Sert OC; Ozyer T; Alhajj R
    Curr Aging Sci; 2019; 12(2):100-120. PubMed ID: 31241024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records.
    Zad Z; Jiang VS; Wolf AT; Wang T; Cheng JJ; Paschalidis IC; Mahalingaiah S
    Front Endocrinol (Lausanne); 2024; 15():1298628. PubMed ID: 38356959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to use machine learning and fuzzy cognitive maps to test hypothetical scenarios in health behavior change interventions: a case study on fruit intake.
    Mkhitaryan S; Giabbanelli PJ; Wozniak MK; de Vries NK; Oenema A; Crutzen R
    BMC Public Health; 2023 Dec; 23(1):2478. PubMed ID: 38082297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image.
    Suha SA; Islam MN
    Sci Rep; 2022 Oct; 12(1):17123. PubMed ID: 36224353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities.
    Rahman AU; Abbas S; Gollapalli M; Ahmed R; Aftab S; Ahmad M; Khan MA; Mosavi A
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Equivalence of FIS and ELM for Interpretable Rule-Based Knowledge Representation.
    Wong SY; Yap KS; Yap HJ; Tan SC; Chang SW
    IEEE Trans Neural Netw Learn Syst; 2015 Jul; 26(7):1417-30. PubMed ID: 25134093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy of follicular fluid and plasma with machine-learning algorithms for polycystic ovary syndrome screening.
    Zhang X; Liang B; Zhang J; Hao X; Xu X; Chang HM; Leung PCK; Tan J
    Mol Cell Endocrinol; 2021 Mar; 523():111139. PubMed ID: 33359305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep-Ensemble-Level-Based Interpretable Takagi-Sugeno-Kang Fuzzy Classifier for Imbalanced Data.
    Wang G; Zhou T; Choi KS; Lu J
    IEEE Trans Cybern; 2022 May; 52(5):3805-3818. PubMed ID: 32946410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.