BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38631208)

  • 1. AIE fluorescent nanozyme-based dual-mode biosensor for analysis of the bioactive component hypoxanthine in meat products.
    Wu G; Luo J; Du C; Zheng Z; Zhang Y; Luo P; Wu Y; Shen Y
    Food Chem; 2024 Aug; 450():139242. PubMed ID: 38631208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering an Enzymatic Cascade Catalytic Smartphone-Based Sensor for Onsite Visual Ratiometric Fluorescence-Colorimetric Dual-Mode Detection of Methyl Mercaptan.
    Shen Y; Wei Y; Gao X; Nie C; Wang J; Wu Y
    Environ Sci Technol; 2023 Jan; 57(4):1680-1691. PubMed ID: 36642941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Modal Bimetallic Nanozyme-Based Sensing Platform Combining Colorimetric and Photothermal Signal Cascade Catalytic Enhancement for Detection of Hypoxanthine to Judge Meat Freshness.
    Wu G; Dilinaer A; Nie P; Liu X; Zheng Z; Luo P; Chen W; Wu Y; Shen Y
    J Agric Food Chem; 2023 Nov; 71(43):16381-16390. PubMed ID: 37908144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIE fluorogen-based oxidase-like fluorescence nanozyme-integrated smartphone for monitoring the freshness authenticity of soy products.
    Nie P; Gao X; Yang X; Zhang Y; Lu H; Wang H; Zheng Z; Shen Y
    Food Chem; 2024 May; 439():138122. PubMed ID: 38070231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-mode ratiometric fluorescence and smartphone-assisted colorimetric sensing platform based on bifunctional Fe,Co-CQD for glucose analysis at physiological pH.
    Wang L; Zheng S; Lu L; Li C; Wang F
    Anal Chim Acta; 2023 Jan; 1239():340701. PubMed ID: 36628711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-mode biosensor for hypoxanthine assay in aquatic products under various storage conditions.
    Song X; Wu Y; Yu Q; Huang X; Huang K; Chen P
    Food Chem; 2024 Sep; 451():139453. PubMed ID: 38677136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples.
    Li F; Rui J; Yan Z; Qiu P; Tang X
    Mikrochim Acta; 2021 Aug; 188(9):311. PubMed ID: 34455515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness.
    Zhang Y; Gao X; Ye Y; Shen Y
    Analyst; 2022 Feb; 147(5):956-964. PubMed ID: 35170599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin C
    Shen Y; Gao X; Chen H; Wei Y; Yang H; Gu Y
    J Hazard Mater; 2023 Jun; 451():131171. PubMed ID: 36913745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-doped g-C
    Fu Q; Liang S; Zhang S; Zhou C; Lv Y; Su X
    Anal Chim Acta; 2024 Jul; 1311():342715. PubMed ID: 38816154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive ratiometric fluorescence assay for detecting xanthine in serum based on the inner filter effect of enzyme-catalyzed oxidation products to silicon nanoparticles.
    Li D; Chen F; Li N; Ye X; Sun Y; Ma P; Song D; Wang X
    Anal Bioanal Chem; 2021 Feb; 413(5):1405-1415. PubMed ID: 33388845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food.
    Huang S; Yao J; Chu X; Liu Y; Xiao Q; Zhang Y
    J Agric Food Chem; 2019 Oct; 67(40):11244-11255. PubMed ID: 31532667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application.
    Han J; Zhang Y; Lv X; Fan D; Dong S
    Nanoscale; 2024 Jan; 16(3):1394-1405. PubMed ID: 38165141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediated xanthine oxidase potentiometric biosensors for hypoxanthine based on ferrocene carboxylic acid modified electrode.
    Lawal AT; Adeloju SB
    Food Chem; 2012 Dec; 135(4):2982-7. PubMed ID: 22980900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-carbon dots embedded in molybdenum single-atom nanoflowers as multifunctional nanozyme for dual-mode detection of hydrogen peroxide and uric acid.
    Chen J; Lian T; Liu S; Zhong J; Cheng R; Tang X; Xu P; Qiu P
    J Colloid Interface Sci; 2024 Aug; 667():450-459. PubMed ID: 38643742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic Fe/Ni metal organic framework-based hypoxanthine biosensor for early monitoring of freshness changes of aquatic products.
    Li Z; Cao L; Sui J; Wang L; Lin H; Wang K
    Food Chem; 2024 Jul; 447():138902. PubMed ID: 38458132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles.
    Wu C; Zhu L; Lu Q; Li H; Zhang Y; Yao S
    Mikrochim Acta; 2019 Nov; 186(12):754. PubMed ID: 31705210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional Fe@PCN-222 nanozyme-based cascade reaction system: Application in ratiometric fluorescence and colorimetric dual-mode sensing of glucose.
    Chen S; Li T; Deng D; Ji Y; Li R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121427. PubMed ID: 35640471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase.
    Lin Z; Sun J; Chen J; Guo L; Chen Y; Chen G
    Anal Chem; 2008 Apr; 80(8):2826-31. PubMed ID: 18315011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orange emissive carbon dots for fluorescent determination of hypoxanthine in fish.
    Mou Z; Gao Z; Hu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120734. PubMed ID: 34922290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.