BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38631440)

  • 1. Fe/S proteins in microbial sulfur oxidation.
    Kümpel C; Grosser M; Tanabe TS; Dahl C
    Biochim Biophys Acta Mol Cell Res; 2024 Jun; 1871(5):119732. PubMed ID: 38631440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans.
    Ernst C; Kayastha K; Koch T; Venceslau SS; Pereira IAC; Demmer U; Ermler U; Dahl C
    FEBS J; 2021 Mar; 288(5):1664-1678. PubMed ID: 32750208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins.
    Barras F; Loiseau L; Py B
    Adv Microb Physiol; 2005; 50():41-101. PubMed ID: 16221578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of the bacterial Fe-S protein biogenesis machineries.
    Sourice M; Oriol C; Aubert C; Mandin P; Py B
    Biochim Biophys Acta Mol Cell Res; 2024 Jun; 1871(5):119746. PubMed ID: 38719030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cascade of sulfur transferases delivers sulfur to the sulfur-oxidizing heterodisulfide reductase-like complex.
    Tanabe TS; Bach E; D'Ermo G; Mohr MG; Hager N; Pfeiffer N; Guiral M; Dahl C
    Protein Sci; 2024 Jun; 33(6):e5014. PubMed ID: 38747384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum.
    Dahl C; Engels S; Pott-Sperling AS; Schulte A; Sander J; Lübbe Y; Deuster O; Brune DC
    J Bacteriol; 2005 Feb; 187(4):1392-404. PubMed ID: 15687204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria.
    Outten FW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1464-9. PubMed ID: 25447545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.
    Li H; Stümpfig M; Zhang C; An X; Stubbe J; Lill R; Huang M
    J Biol Chem; 2017 Jul; 292(27):11445-11451. PubMed ID: 28515324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.
    Yee N; Choi J; Porter AW; Carey S; Rauschenbach I; Harel A
    FEMS Microbiol Lett; 2014 Dec; 361(2):138-43. PubMed ID: 25307727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes.
    Tanabe TS; Grosser M; Hahn L; Kümpel C; Hartenfels H; Vtulkin E; Flegler W; Dahl C
    PLoS Biol; 2023 Jun; 21(6):e3002177. PubMed ID: 37368881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur.
    Pott AS; Dahl C
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1881-1894. PubMed ID: 9695921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DsrR, a novel IscA-like protein lacking iron- and Fe-S-binding functions, involved in the regulation of sulfur oxidation in Allochromatium vinosum.
    Grimm F; Cort JR; Dahl C
    J Bacteriol; 2010 Mar; 192(6):1652-61. PubMed ID: 20061482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor.
    Cao X; Koch T; Steffens L; Finkensieper J; Zigann R; Cronan JE; Dahl C
    Elife; 2018 Jul; 7():. PubMed ID: 30004385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation.
    Garcia PS; D'Angelo F; Ollagnier de Choudens S; Dussouchaud M; Bouveret E; Gribaldo S; Barras F
    Nat Ecol Evol; 2022 Oct; 6(10):1564-1572. PubMed ID: 36109654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic concepts of iron-sulfur protein biogenesis in Biology.
    Braymer JJ; Freibert SA; Rakwalska-Bange M; Lill R
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118863. PubMed ID: 33007329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.
    Boughanemi S; Lyonnet J; Infossi P; Bauzan M; Kosta A; Lignon S; Giudici-Orticoni MT; Guiral M
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27284018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction.
    Wagner T; Koch J; Ermler U; Shima S
    Science; 2017 Aug; 357(6352):699-703. PubMed ID: 28818947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-sulphur cluster biogenesis via the SUF pathway.
    Bai Y; Chen T; Happe T; Lu Y; Sawyer A
    Metallomics; 2018 Aug; 10(8):1038-1052. PubMed ID: 30019043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries.
    Braymer JJ; Stümpfig M; Thelen S; Mühlenhoff U; Lill R
    Biochim Biophys Acta Mol Cell Res; 2019 Feb; 1866(2):240-251. PubMed ID: 30419257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.
    Lill R; Hoffmann B; Molik S; Pierik AJ; Rietzschel N; Stehling O; Uzarska MA; Webert H; Wilbrecht C; Mühlenhoff U
    Biochim Biophys Acta; 2012 Sep; 1823(9):1491-508. PubMed ID: 22609301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.