These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38632050)
1. GAUSS: a summary-statistics-based R package for accurate estimation of linkage disequilibrium for variants, Gaussian imputation, and TWAS analysis of cosmopolitan cohorts. Lee D; Bacanu SA Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38632050 [TBL] [Abstract][Full Text] [Related]
2. DISTMIX: direct imputation of summary statistics for unmeasured SNPs from mixed ethnicity cohorts. Lee D; Bigdeli TB; Williamson VS; Vladimirov VI; Riley BP; Fanous AH; Bacanu SA Bioinformatics; 2015 Oct; 31(19):3099-104. PubMed ID: 26059716 [TBL] [Abstract][Full Text] [Related]
3. Increasing the resolution and precision of psychiatric genome-wide association studies by re-imputing summary statistics using a large, diverse reference panel. Chatzinakos C; Lee D; Cai N; Vladimirov VI; Webb BT; Riley BP; Flint J; Kendler KS; Ressler KJ; Daskalakis NP; Bacanu SA Am J Med Genet B Neuropsychiatr Genet; 2021 Jan; 186(1):16-27. PubMed ID: 33576176 [TBL] [Abstract][Full Text] [Related]
4. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Pasaniuc B; Zaitlen N; Shi H; Bhatia G; Gusev A; Pickrell J; Hirschhorn J; Strachan DP; Patterson N; Price AL Bioinformatics; 2014 Oct; 30(20):2906-14. PubMed ID: 24990607 [TBL] [Abstract][Full Text] [Related]
5. JEPEGMIX: gene-level joint analysis of functional SNPs in cosmopolitan cohorts. Lee D; Williamson VS; Bigdeli TB; Riley BP; Webb BT; Fanous AH; Kendler KS; Vladimirov VI; Bacanu SA Bioinformatics; 2016 Jan; 32(2):295-7. PubMed ID: 26428293 [TBL] [Abstract][Full Text] [Related]
6. Accurate and adaptive imputation of summary statistics in mixed-ethnicity cohorts. Togninalli M; Roqueiro D; ; Borgwardt KM Bioinformatics; 2018 Sep; 34(17):i687-i696. PubMed ID: 30423082 [TBL] [Abstract][Full Text] [Related]
7. RAISS: robust and accurate imputation from summary statistics. Julienne H; Shi H; Pasaniuc B; Aschard H Bioinformatics; 2019 Nov; 35(22):4837-4839. PubMed ID: 31173064 [TBL] [Abstract][Full Text] [Related]
8. Comparison of methods for estimating genetic correlation between complex traits using GWAS summary statistics. Zhang Y; Cheng Y; Jiang W; Ye Y; Lu Q; Zhao H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33497438 [TBL] [Abstract][Full Text] [Related]
9. Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. Benner C; Havulinna AS; Järvelin MR; Salomaa V; Ripatti S; Pirinen M Am J Hum Genet; 2017 Oct; 101(4):539-551. PubMed ID: 28942963 [TBL] [Abstract][Full Text] [Related]
10. Estimating colocalization probability from limited summary statistics. King EA; Dunbar F; Davis JW; Degner JF BMC Bioinformatics; 2021 May; 22(1):254. PubMed ID: 34000989 [TBL] [Abstract][Full Text] [Related]
11. Evaluation and application of summary statistic imputation to discover new height-associated loci. Rüeger S; McDaid A; Kutalik Z PLoS Genet; 2018 May; 14(5):e1007371. PubMed ID: 29782485 [TBL] [Abstract][Full Text] [Related]
12. FAPI: Fast and accurate P-value Imputation for genome-wide association study. Kwan JS; Li MX; Deng JE; Sham PC Eur J Hum Genet; 2016 May; 24(5):761-6. PubMed ID: 26306642 [TBL] [Abstract][Full Text] [Related]
13. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants. Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091 [TBL] [Abstract][Full Text] [Related]
14. HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics. Zheng J; Rodriguez S; Laurin C; Baird D; Trela-Larsen L; Erzurumluoglu MA; Zheng Y; White J; Giambartolomei C; Zabaneh D; Morris R; Kumari M; Casas JP; Hingorani AD; ; Evans DM; Gaunt TR; Day IN Bioinformatics; 2017 Jan; 33(1):79-86. PubMed ID: 27591082 [TBL] [Abstract][Full Text] [Related]
15. The predictive capacity of polygenic risk scores for disease risk is only moderately influenced by imputation panels tailored to the target population. Levi H; Elkon R; Shamir R Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38265251 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of vicinity-based hidden Markov models for genotype imputation. Wang S; Kim M; Jiang X; Harmanci AO BMC Bioinformatics; 2022 Aug; 23(1):356. PubMed ID: 36038834 [TBL] [Abstract][Full Text] [Related]
17. JEPEGMIX2: improved gene-level joint analysis of eQTLs in cosmopolitan cohorts. Chatzinakos C; Lee D; Webb BT; Vladimirov VI; Kendler KS; Bacanu SA Bioinformatics; 2018 Jan; 34(2):286-288. PubMed ID: 28968763 [TBL] [Abstract][Full Text] [Related]
18. CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Yang Y; Shi X; Jiao Y; Huang J; Chen M; Zhou X; Sun L; Lin X; Yang C; Liu J Bioinformatics; 2020 Apr; 36(7):2009-2016. PubMed ID: 31755899 [TBL] [Abstract][Full Text] [Related]
19. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related]
20. IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies. Dai M; Ming J; Cai M; Liu J; Yang C; Wan X; Xu Z Bioinformatics; 2017 Sep; 33(18):2882-2889. PubMed ID: 28498950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]