BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 38632745)

  • 1. Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation.
    Ilg P; Kröger M
    Phys Chem Chem Phys; 2020 Oct; 22(39):22244-22259. PubMed ID: 33001111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow.
    Ilg P
    Phys Rev E; 2019 Aug; 100(2-1):022608. PubMed ID: 31574757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging.
    Feng X; Jia G; Peng J; Huang L; Liang X; Zhang H; Liu Y; Zhang B; Zhang Y; Sun M; Li P; Miao Q; Wang Y; Xi L; Hu K; Li T; Hui H; Tian J
    Med Phys; 2023 Jul; 50(7):4651-4663. PubMed ID: 37293867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium response of magnetic nanoparticles to time-varying magnetic fields: Contributions from Brownian and Néel processes.
    Ilg P
    Phys Rev E; 2024 Mar; 109(3-1):034603. PubMed ID: 38632745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.
    Shasha C; Krishnan KM
    Adv Mater; 2021 Jun; 33(23):e1904131. PubMed ID: 32557879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields.
    Rivera-Rodriguez A; Rinaldi-Ramos CM
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():163-185. PubMed ID: 33856937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells.
    Mehak ; Thummer RP; Pandey LM
    Biotechnol Genet Eng Rev; 2023 Jan; ():1-47. PubMed ID: 36710396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies.
    Palzer J; Eckstein L; Slabu I; Reisen O; Neumann UP; Roeth AA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.
    Suriyanto ; Ng EY; Kumar SD
    Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.