These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38632754)

  • 21. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor.
    Peng W; Yu R; He Y; Wang ZL
    ACS Nano; 2016 Apr; 10(4):4395-402. PubMed ID: 27077327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of the electrification of wind-blown sand.
    Hu W; Xie L; Zheng X
    Eur Phys J E Soft Matter; 2012 Mar; 35(3):1-8. PubMed ID: 22438041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface.
    Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL
    ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites.
    Shin J; Ji S; Cho H; Park J
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction.
    Hu W; Wu W; Zhou HM
    Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications.
    Li Y; Luo Y; Deng H; Shi S; Tian S; Wu H; Tang J; Zhang C; Zhang X; Zha JW; Xiao S
    Adv Mater; 2024 Mar; ():e2314380. PubMed ID: 38517171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triboelectric Mechanism of Oil-Solid Interface Adopted for Self-Powered Insulating Oil Condition Monitoring.
    Xiao S; Wu H; Li N; Tan X; Deng H; Zhang X; Tang J; Li Y
    Adv Sci (Weinh); 2023 May; 10(13):e2207230. PubMed ID: 36825678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown.
    Liu D; Zhou L; Cui S; Gao Y; Li S; Zhao Z; Yi Z; Zou H; Fan Y; Wang J; Wang ZL
    Nat Commun; 2022 Oct; 13(1):6019. PubMed ID: 36224185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
    Park H; LeBrun TW
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34904-34913. PubMed ID: 27936542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric-Internal-Capacitance-Induced Charge Aggregation for the Hot-Surface Triboelectric Nanogenerator.
    Yan W; Liu Y; Cao LNY; Jiang T; Chen B; Tang W
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56827-56835. PubMed ID: 36519555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Influence of Microscale Surface Roughness on Water-Droplet Contact Electrification.
    Helseth LE
    Langmuir; 2019 Jun; 35(25):8268-8275. PubMed ID: 31142118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale charge transfer and diffusion at the MoS
    Xu R; Ye S; Xu K; Lei L; Hussain S; Zheng Z; Pang F; Xing S; Liu X; Ji W; Cheng Z
    Nanotechnology; 2018 Aug; 29(35):355701. PubMed ID: 29873636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay.
    Wang C; Guo H; Wang P; Li J; Sun Y; Zhang D
    Adv Mater; 2023 Apr; 35(17):e2209895. PubMed ID: 36738121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial-arrayed rotary electrification for high performance triboelectric generator.
    Zhu G; Chen J; Zhang T; Jing Q; Wang ZL
    Nat Commun; 2014 Mar; 5():3426. PubMed ID: 24594501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospinning Triboelectric Laminates: A Pathway for Scaling Energy Harvesters.
    Linarts A; Sherrell PC; Mālnieks K; Ellis AV; Šutka A
    Small; 2023 Apr; 19(14):e2205563. PubMed ID: 36596644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linear-grating triboelectric generator based on sliding electrification.
    Zhu G; Chen J; Liu Y; Bai P; Zhou YS; Jing Q; Pan C; Wang ZL
    Nano Lett; 2013 May; 13(5):2282-9. PubMed ID: 23577639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case.
    Lin S; Xu L; Xu C; Chen X; Wang AC; Zhang B; Lin P; Yang Y; Zhao H; Wang ZL
    Adv Mater; 2019 Apr; 31(17):e1808197. PubMed ID: 30844100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density.
    Liu Z; Huang Y; Shi Y; Tao X; He H; Chen F; Huang ZX; Wang ZL; Chen X; Qu JP
    Nat Commun; 2022 Jul; 13(1):4083. PubMed ID: 35835779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.