These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38632777)

  • 1. Tuning limit cycles with a noise: Survival and collapse.
    Sarkar P; Ray DS
    Phys Rev E; 2024 Mar; 109(3-1):034209. PubMed ID: 38632777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for direct analytic solution of the nonlinear Langevin equation using multiple timescale analysis: Mean-square displacement.
    Sarkar P; Banerjee D; Paul S; Ray DS
    Phys Rev E; 2022 Aug; 106(2-1):024203. PubMed ID: 36109927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise.
    Xu Y; Gu R; Zhang H; Xu W; Duan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056215. PubMed ID: 21728638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization and desynchronization of self-sustained oscillators by common noise.
    Goldobin DS; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):045201. PubMed ID: 15903714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillation collapse in coupled quantum van der Pol oscillators.
    Ishibashi K; Kanamoto R
    Phys Rev E; 2017 Nov; 96(5-1):052210. PubMed ID: 29347706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise.
    Belousov R; Berger F; Hudspeth AJ
    Phys Rev E; 2020 Sep; 102(3-1):032209. PubMed ID: 33075951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment of noise-induced and limit cycle oscillators under weak noise.
    Mitarai N; Alon U; Jensen MH
    Chaos; 2013 Jun; 23(2):023125. PubMed ID: 23822490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator.
    Zakharova A; Vadivasova T; Anishchenko V; Koseska A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011106. PubMed ID: 20365322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical manifold of globally coupled overdamped anharmonic oscillators driven by additive Gaussian white noise.
    Kürsten R; Gütter S; Behn U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022114. PubMed ID: 24032782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise.
    Nakao H; Teramae JN; Goldobin DS; Kuramoto Y
    Chaos; 2010 Sep; 20(3):033126. PubMed ID: 20887066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Fokker-Planck equation for birhythmic modified van der Pol oscillator.
    Yamapi R; Filatrella G; Aziz-Alaoui MA; Cerdeira HA
    Chaos; 2012 Dec; 22(4):043114. PubMed ID: 23278049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of Van der Pol oscillators in a thermal bath.
    Ruan D; Liu J; Wu C
    Phys Rev E; 2023 Aug; 108(2-1):024207. PubMed ID: 37723705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state statistics, emergent patterns and intermittent energy transfer in a ring of oscillators.
    Pedergnana T; Noiray N
    Nonlinear Dyn; 2022; 108(2):1133-1163. PubMed ID: 35465412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing.
    Mayol C; Toral R; Mirasso CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066141. PubMed ID: 15244701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
    Mall S; Chakraverty S
    Neural Comput; 2016 Aug; 28(8):1574-98. PubMed ID: 27348738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: Thermoacoustic instabilities as an example.
    Bonciolini G; Boujo E; Noiray N
    Phys Rev E; 2017 Jun; 95(6-1):062217. PubMed ID: 28709231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation.
    Gaudreault M; Drolet F; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056214. PubMed ID: 23004850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-induced neural impulses.
    Treutlein H; Schulten K
    Eur Biophys J; 1986; 13(6):355-65. PubMed ID: 3757930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise robust approach to reconstruction of van der Pol-like oscillators and its application to Granger causality.
    Sysoev IV; Bezruchko BP
    Chaos; 2021 Aug; 31(8):083118. PubMed ID: 34470233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.