These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38632779)

  • 1. Pair filamentation and laser scattering in beam-driven QED cascades.
    Qu K; Griffith A; Fisch NJ
    Phys Rev E; 2024 Mar; 109(3-2):035208. PubMed ID: 38632779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of Collective Plasma Effects in Beam-Driven QED Cascades.
    Qu K; Meuren S; Fisch NJ
    Phys Rev Lett; 2021 Aug; 127(9):095001. PubMed ID: 34506208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-pulse-shape control of seeded QED cascades.
    Tamburini M; Di Piazza A; Keitel CH
    Sci Rep; 2017 Jul; 7(1):5694. PubMed ID: 28720854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QED cascade saturation in extreme high fields.
    Luo W; Liu WY; Yuan T; Chen M; Yu JY; Li FY; Del Sorbo D; Ridgers CP; Sheng ZM
    Sci Rep; 2018 May; 8(1):8400. PubMed ID: 29849072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filamentation instability of counterstreaming laser-driven plasmas.
    Fox W; Fiksel G; Bhattacharjee A; Chang PY; Germaschewski K; Hu SX; Nilson PM
    Phys Rev Lett; 2013 Nov; 111(22):225002. PubMed ID: 24329452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pair creation in QED-strong pulsed laser fields interacting with electron beams.
    Sokolov IV; Naumova NM; Nees JA; Mourou GA
    Phys Rev Lett; 2010 Nov; 105(19):195005. PubMed ID: 21231176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QED cascade with 10 PW-class lasers.
    Jirka M; Klimo O; Vranic M; Weber S; Korn G
    Sci Rep; 2017 Nov; 7(1):15302. PubMed ID: 29127428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weibel-induced filamentation during an ultrafast laser-driven plasma expansion.
    Quinn K; Romagnani L; Ramakrishna B; Sarri G; Dieckmann ME; Wilson PA; Fuchs J; Lancia L; Pipahl A; Toncian T; Willi O; Clarke RJ; Notley M; Macchi A; Borghesi M
    Phys Rev Lett; 2012 Mar; 108(13):135001. PubMed ID: 22540706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy absorption in the laser-QED regime.
    Savin AF; Ross AJ; Aboushelbaya R; Mayr MW; Spiers B; Wang RH; Norreys PA
    Sci Rep; 2019 Jun; 9(1):8956. PubMed ID: 31222083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional magnetic structures generated by the development of the filamentation (Weibel) instability in the relativistic regime.
    Califano F; Del Sarto D; Pegoraro F
    Phys Rev Lett; 2006 Mar; 96(10):105008. PubMed ID: 16605748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of radial Weibel instability in relativistic intensity laser-plasma interactions inside a sub-micron thick liquid target.
    Ngirmang GK; Morrison JT; George KM; Smith JR; Frische KD; Orban C; Chowdhury EA; Roquemore WM
    Sci Rep; 2020 Jun; 10(1):9872. PubMed ID: 32555513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation-reaction trapping of electrons in extreme laser fields.
    Ji LL; Pukhov A; Kostyukov IY; Shen BF; Akli K
    Phys Rev Lett; 2014 Apr; 112(14):145003. PubMed ID: 24765978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma.
    Honda M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016401. PubMed ID: 14995719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations of the filamentation of high-intensity laser-produced electron beams.
    Wei MS; Beg FN; Clark EL; Dangor AE; Evans RG; Gopal A; Ledingham KW; McKenna P; Norreys PA; Tatarakis M; Zepf M; Krushelnick K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056412. PubMed ID: 15600770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle-resolved multioctave supercontinua from mid-infrared laser filaments.
    Mitrofanov AV; Voronin AA; Sidorov-Biryukov DA; Mitryukovsky SI; Rozhko MV; Pugžlys A; Fedotov AB; Panchenko VY; Baltuška A; Zheltikov AM
    Opt Lett; 2016 Aug; 41(15):3479-82. PubMed ID: 27472598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic instabilities for relativistic beam-plasma interaction in whole k space: nonrelativistic beam and plasma temperature effects.
    Bret A; Firpo MC; Deutsch C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016403. PubMed ID: 16090095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Kinetic-Scale Current Filamentation Dynamics and Associated Magnetic Fields in Interpenetrating Plasmas.
    Swadling GF; Bruulsema C; Fiuza F; Higginson DP; Huntington CM; Park HS; Pollock BB; Rozmus W; Rinderknecht HG; Katz J; Birkel A; Ross JS
    Phys Rev Lett; 2020 May; 124(21):215001. PubMed ID: 32530650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the initial filamentation of a relativistic electron beam passing through a plasma.
    Bret A; Firpo MC; Deutsch C
    Phys Rev Lett; 2005 Mar; 94(11):115002. PubMed ID: 15903866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filamentation in Atmospheric Air with Tunable 1100-2400 nm Near-Infrared Femtosecond Laser Source.
    O'Connor SP; Marble CB; Nodurft DT; Noojin GD; Boretsky AR; Wharmby AW; Scully MO; Yakovlev VV
    Sci Rep; 2019 Aug; 9(1):12049. PubMed ID: 31427739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pair production and optical lasers.
    Blaschke DB; Prozorkevich AV; Roberts CD; Schmidt SM; Smolyansky SA
    Phys Rev Lett; 2006 Apr; 96(14):140402. PubMed ID: 16712053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.