These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38632802)

  • 1. Signatures of quantum chaos and fermionization in the incoherent transport of bosonic carriers in the Bose-Hubbard chain.
    Muraev PS; Maksimov DN; Kolovsky AR
    Phys Rev E; 2024 Mar; 109(3):L032107. PubMed ID: 38632802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open Bose-Hubbard chain: Pseudoclassical approach.
    Bychek AA; Muraev PS; Maksimov DN; Kolovsky AR
    Phys Rev E; 2020 Jan; 101(1-1):012208. PubMed ID: 32069667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction-induced decoherence of atomic BLOCH oscillations.
    Buchleitner A; Kolovsky AR
    Phys Rev Lett; 2003 Dec; 91(25):253002. PubMed ID: 14754110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of Wigner-Dyson level statistics in a classically integrable system.
    Elkamshishy AA; Greene CH
    Phys Rev E; 2021 Jun; 103(6-1):062211. PubMed ID: 34271623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos and Quantum Scars in Bose-Josephson Junction Coupled to a Bosonic Mode.
    Sinha S; Sinha S
    Phys Rev Lett; 2020 Sep; 125(13):134101. PubMed ID: 33034498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos in the three-site Bose-Hubbard model: Classical versus quantum.
    Nakerst G; Haque M
    Phys Rev E; 2023 Feb; 107(2-1):024210. PubMed ID: 36932617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wigner crystal versus fermionization for one-dimensional Hubbard models with and without long-range interactions.
    Xu Z; Li L; Xianlong G; Chen S
    J Phys Condens Matter; 2013 Feb; 25(5):055601. PubMed ID: 23262414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended Bose-Hubbard model with dipolar excitons.
    Lagoin C; Bhattacharya U; Grass T; Chhajlany RW; Salamon T; Baldwin K; Pfeiffer L; Lewenstein M; Holzmann M; Dubin F
    Nature; 2022 Sep; 609(7927):485-489. PubMed ID: 36104551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry between repulsive and attractive interactions in driven-dissipative Bose-Hubbard systems.
    Gangat AA; McCulloch IP; Kao YJ
    Sci Rep; 2018 Feb; 8(1):3698. PubMed ID: 29487298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons.
    Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC
    Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement structure of the two-component Bose-Hubbard model as a quantum simulator of a Heisenberg chain.
    Morera I; Polls A; Juliá-Díaz B
    Sci Rep; 2019 Jul; 9(1):9424. PubMed ID: 31263117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern Formation and Exotic Order in Driven-Dissipative Bose-Hubbard Systems.
    Wang Z; Navarrete-Benlloch C; Cai Z
    Phys Rev Lett; 2020 Sep; 125(11):115301. PubMed ID: 32975958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum signatures of an oscillatory instability in the Bose-Hubbard trimer.
    Jason P; Johansson M; Kirr K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016214. PubMed ID: 23005514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Manifestation of the Classical Bifurcation in the Driven Dissipative Bose-Hubbard Dimer.
    Muraev P; Maksimov D; Kolovsky A
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical Fractals and Quantum Chaos in Ultracold Dipolar Collisions.
    Yang BC; Pérez-Ríos J; Robicheaux F
    Phys Rev Lett; 2017 Apr; 118(15):154101. PubMed ID: 28452515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximal Speed for Macroscopic Particle Transport in the Bose-Hubbard Model.
    Faupin J; Lemm M; Sigal IM
    Phys Rev Lett; 2022 Apr; 128(15):150602. PubMed ID: 35499893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy redistribution and spatiotemporal evolution of correlations after a sudden quench of the Bose-Hubbard model.
    Takasu Y; Yagami T; Asaka H; Fukushima Y; Nagao K; Goto S; Danshita I; Takahashi Y
    Sci Adv; 2020 Sep; 6(40):. PubMed ID: 32998897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.
    Łącki M; Damski B; Zakrzewski J
    Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical thermalization in Bose-Hubbard systems.
    Schlagheck P; Shepelyansky DL
    Phys Rev E; 2016 Jan; 93(1):012126. PubMed ID: 26871043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnon edge states in the hardcore- Bose-Hubbard model.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.