BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38632933)

  • 1. A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging.
    García-Astrain C; Henriksen-Lacey M; Lenzi E; Renero-Lecuna C; Langer J; Piñeiro P; Molina-Martínez B; Plou J; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Nano; 2024 Apr; 18(17):11257-11269. PubMed ID: 38632933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging.
    Li Y; Jiang G; Wan Y; Dauda SA; Pi F
    Talanta; 2024 Aug; 276():126283. PubMed ID: 38776777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging.
    Wang W; Vikesland PJ
    Anal Chem; 2023 Dec; 95(49):18055-18064. PubMed ID: 37934619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies.
    Zhou Y; Lu Y; Liu Y; Hu X; Chen H
    Biosens Bioelectron; 2023 May; 228():115231. PubMed ID: 36934607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging.
    Lenzi E; Jimenez de Aberasturi D; Henriksen-Lacey M; Piñeiro P; Muniz AJ; Lahann J; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2022 May; 14(18):20708-20719. PubMed ID: 35487502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Bioprinted Hepar-on-a-Chip Implanted in Graphene-Based Plasmonic Sensors.
    Wang Y; Ma D; Zhang Q; Qian W; Liang D; Shen J; Pan X; Wang C; Sheng E; Zhu D
    ACS Sens; 2024 Jun; 9(6):3423-3432. PubMed ID: 38803215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer.
    Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ
    Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair.
    Luo Y; Wei X; Wan Y; Lin X; Wang Z; Huang P
    Acta Biomater; 2019 Jul; 92():37-47. PubMed ID: 31108260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS Tags for Biomedical Detection and Bioimaging.
    Liu H; Gao X; Xu C; Liu D
    Theranostics; 2022; 12(4):1870-1903. PubMed ID: 35198078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU; Kim WH; Lee HS; Park KH; Sim SJ
    Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy.
    Plou J; Molina-Martínez B; García-Astrain C; Langer J; García I; Ercilla A; Perumal G; Carracedo A; Liz-Marzán LM
    Nano Lett; 2021 Oct; 21(20):8785-8793. PubMed ID: 34614348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in SERS biosensing.
    Bantz KC; Meyer AF; Wittenberg NJ; Im H; Kurtuluş O; Lee SH; Lindquist NC; Oh SH; Haynes CL
    Phys Chem Chem Phys; 2011 Jun; 13(24):11551-67. PubMed ID: 21509385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems.
    Xie Y; Yang S; Mao Z; Li P; Zhao C; Cohick Z; Huang PH; Huang TJ
    ACS Nano; 2014 Dec; 8(12):12175-84. PubMed ID: 25402207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D plasmonic hexaplex paper sensor for label-free human saliva sensing and machine learning-assisted early-stage lung cancer screening.
    Linh VTN; Kim H; Lee MY; Mun J; Kim Y; Jeong BH; Park SG; Kim DH; Rho J; Jung HS
    Biosens Bioelectron; 2024 Jan; 244():115779. PubMed ID: 37922808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.