BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38633064)

  • 21. Engineering multimodal dielectric resonance of TiO
    Abbas MA; Zubair A; Riaz K; Huang W; Teng J; Mehmood MQ; Zubair M
    Opt Express; 2020 Aug; 28(16):23509-23522. PubMed ID: 32752346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.
    Hu J; Lang T; Shi GH
    Opt Express; 2017 Jun; 25(13):15241-15251. PubMed ID: 28788953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dipole and quadrupole trapped modes within bi-periodic silicon particle array realizing three-channel refractive sensing.
    Zhao W; Ju D; Jiang Y; Zhan Q
    Opt Express; 2014 Dec; 22(25):31277-85. PubMed ID: 25607075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly-sensitive sensor based on toroidal dipole governed by bound state in the continuum in dielectric non-coaxial core-shell cylinder.
    Huo Y; Zhang X; Yan M; Sun K; Jiang S; Ning T; Zhao L
    Opt Express; 2022 May; 30(11):19030-19041. PubMed ID: 36221690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refractive index sensing with Fano resonances in silicon oligomers.
    Chong KE; Orton HW; Staude I; Decker M; Miroshnichenko AE; Brener I; Kivshar YS; Neshev DN
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28220001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities.
    Li J; Chen J; Liu X; Tian H; Wang J; Cui J; Rohimah S
    Appl Opt; 2021 Jun; 60(18):5312-5319. PubMed ID: 34263768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toroidal dipole bound states in the continuum based on hybridization of surface lattice resonances.
    Chen D; Xu J; Yu H; Mo Z
    Opt Express; 2023 Jun; 31(12):19828-19842. PubMed ID: 37381390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-quality-factor dual-band Fano resonances induced by dual bound states in the continuum using a planar nanohole slab.
    Mi Q; Sang T; Pei Y; Yang C; Li S; Wang Y; Ma B
    Nanoscale Res Lett; 2021 Sep; 16(1):150. PubMed ID: 34585286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From Fano to Quasi-BIC Resonances in Individual Dielectric Nanoantennas.
    Melik-Gaykazyan E; Koshelev K; Choi JH; Kruk SS; Bogdanov A; Park HG; Kivshar Y
    Nano Lett; 2021 Feb; 21(4):1765-1771. PubMed ID: 33539099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and analysis of a flexible Ruddlesden-Popper 2D perovskite metastructure based on symmetry-protected THz-bound states in the continuum.
    Saadatmand SB; Shokouhi S; Ahmadi V; Hamidi SM
    Sci Rep; 2023 Dec; 13(1):22411. PubMed ID: 38104133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity.
    Chen J; Lian X; Zhao M; Xie C
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz all-dielectric metasurface sensor based on quasi-bound states in the continuum.
    Xue YY; Li JS
    Appl Opt; 2023 Feb; 62(6):1610-1615. PubMed ID: 36821326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double Fano resonances in individual metallic nanostructure for high sensing sensitivity.
    Yan Z; Wen X; Gu P; Huang Z; Zhan P; Chen Z; Wang Z
    Nanotechnology; 2017 Jul; ():. PubMed ID: 28743841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-Loss Dual-Band Transparency Metamaterial with Toroidal Dipole.
    Xiang T; Lei T; Chen T; Shen Z; Zhang J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal⁻Insulator⁻Metal Waveguide.
    Guo Z; Wen K; Hu Q; Lai W; Lin J; Fang Y
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Plasmonic Chip-Scale Refractive Index Sensor Design Based on Multiple Fano Resonances.
    Wen K; Chen L; Zhou J; Lei L; Fang Y
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30241378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the dual-Fano resonance generation and its potential for self-calibrated sensing.
    Zhao X; Cheng Z; Zhu M; Huang T; Zeng S; Pan J; Song C; Wang Y; Shum PP
    Opt Express; 2020 Aug; 28(16):23703-23716. PubMed ID: 32752363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.