These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38633079)
41. Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data. Pietsch J; Khamfongkhruea C; Berthold J; Janssens G; Stützer K; Löck S; Richter C Med Phys; 2023 Jan; 50(1):506-517. PubMed ID: 36102783 [TBL] [Abstract][Full Text] [Related]
42. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. A P S; Kar S; S G; Gopi VP; Palanisamy P Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630 [TBL] [Abstract][Full Text] [Related]
43. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. Kavitha MS; Kurita T; Park SY; Chien SI; Bae JS; Ahn BC PLoS One; 2017; 12(12):e0189974. PubMed ID: 29281701 [TBL] [Abstract][Full Text] [Related]
44. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks. Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358 [TBL] [Abstract][Full Text] [Related]
45. Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals. Zhang H; Silva FHS; Ohata EF; Medeiros AG; Rebouças Filho PP Front Hum Neurosci; 2020; 14():365. PubMed ID: 33061900 [TBL] [Abstract][Full Text] [Related]
46. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals. Wu H; Huang Q; Wang D; Gao L J Electromyogr Kinesiol; 2018 Oct; 42():136-142. PubMed ID: 30077088 [TBL] [Abstract][Full Text] [Related]
47. Detection of COVID-19 from Chest CT Images Using CNN with MLP Hybrid Model. Rajasekar SJS; Narayanan V; Perumal V Stud Health Technol Inform; 2021 Oct; 285():288-291. PubMed ID: 34734889 [TBL] [Abstract][Full Text] [Related]
48. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy? Patel MN; Aboumohamed A; Hemal A BJU Int; 2015 Dec; 116(6):990-4. PubMed ID: 26123244 [TBL] [Abstract][Full Text] [Related]
49. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment. Fan Y; Zhang B; Chang W; Zhang X; Liao H Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):411-423. PubMed ID: 28887783 [TBL] [Abstract][Full Text] [Related]
50. Effect of dual-convolutional neural network model fusion for Aluminum profile surface defects classification and recognition. Liu X; He W; Zhang Y; Yao S; Cui Z Math Biosci Eng; 2022 Jan; 19(1):997-1025. PubMed ID: 34903023 [TBL] [Abstract][Full Text] [Related]
51. Convolutional neural network-based automatic detection of follicle cells in ovarian tissue using optical coherence tomography. Saito K; Motani Y; Takae S; Suzuki N; Tsukada K Biomed Phys Eng Express; 2020 Nov; 6(6):. PubMed ID: 34035193 [TBL] [Abstract][Full Text] [Related]
52. Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2010; 10(27):1-118. PubMed ID: 23074405 [TBL] [Abstract][Full Text] [Related]
53. An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images. Bal A; Banerjee M; Chaki R; Sharma P Med Biol Eng Comput; 2021 Aug; 59(7-8):1495-1527. PubMed ID: 34184181 [TBL] [Abstract][Full Text] [Related]
54. Effect on speech emotion classification of a feature selection approach using a convolutional neural network. Amjad A; Khan L; Chang HT PeerJ Comput Sci; 2021; 7():e766. PubMed ID: 34805511 [TBL] [Abstract][Full Text] [Related]
55. Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Kepp T; Droigk C; Casper M; Evers M; Hüttmann G; Salma N; Manstein D; Heinrich MP; Handels H Biomed Opt Express; 2019 Jul; 10(7):3484-3496. PubMed ID: 31467791 [TBL] [Abstract][Full Text] [Related]
56. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network. Su R; Song J; Wang Z; Mao S; Mao Y; Wu X; Hou M Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1037-1048. PubMed ID: 36097771 [TBL] [Abstract][Full Text] [Related]
57. A Comparative Study of Deep Learning Algorithms for Detecting Food Intake. Ghosh T; Sazonov E Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2993-2996. PubMed ID: 36085821 [TBL] [Abstract][Full Text] [Related]
58. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
59. Phenotype recognition with combined features and random subspace classifier ensemble. Zhang B; Pham TD BMC Bioinformatics; 2011 Apr; 12():128. PubMed ID: 21529372 [TBL] [Abstract][Full Text] [Related]
60. Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks. Valan M; Makonyi K; Maki A; Vondráček D; Ronquist F Syst Biol; 2019 Nov; 68(6):876-895. PubMed ID: 30825372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]