These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38633093)

  • 1. Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis.
    Huang B; Kang L; Tsang VTC; Lo CTK; Wong TTW
    Biomed Opt Express; 2024 Apr; 15(4):2636-2651. PubMed ID: 38633093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images.
    Shams UA; Javed I; Fizan M; Shah AR; Mustafa G; Zubair M; Massoud Y; Mehmood MQ; Naveed MA
    Blood Cells Mol Dis; 2024 Mar; 105():102823. PubMed ID: 38241949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic whole blood cell analysis from blood smear using label-free multi-modal imaging with deep neural networks.
    Chen C; Gu Y; Xiao Z; Wang H; He X; Jiang Z; Kong Y; Liu C; Xue L; Vargas J; Wang S
    Anal Chim Acta; 2022 Oct; 1229():340401. PubMed ID: 36156229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis.
    Kaza N; Ojaghi A; Robles FE
    BME Front; 2022; 2022():9853606. PubMed ID: 37850166
    [No Abstract]   [Full Text] [Related]  

  • 5. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.
    Prinyakupt J; Pluempitiwiriyawej C
    Biomed Eng Online; 2015 Jun; 14():63. PubMed ID: 26123131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining.
    Lebel P; Dial R; Vemuri VNP; Garcia V; DeRisi J; Gómez-Sjöberg R
    PLoS Comput Biol; 2021 Aug; 17(8):e1009257. PubMed ID: 34370724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free hematology analysis using deep-ultraviolet microscopy.
    Ojaghi A; Carrazana G; Caruso C; Abbas A; Myers DR; Lam WA; Robles FE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14779-14789. PubMed ID: 32561645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leukemia segmentation and classification: A comprehensive survey.
    Saleem S; Amin J; Sharif M; Mallah GA; Kadry S; Gandomi AH
    Comput Biol Med; 2022 Nov; 150():106028. PubMed ID: 36126356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review.
    Kim K; Lee WG
    Small Methods; 2023 Jan; 7(1):e2200979. PubMed ID: 36420919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated estimation of parasitaemia of Plasmodium yoelii-infected mice by digital image analysis of Giemsa-stained thin blood smears.
    Ma C; Harrison P; Wang L; Coppel RL
    Malar J; 2010 Dec; 9():348. PubMed ID: 21122144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear.
    Rastogi P; Khanna K; Singh V
    Comput Biol Med; 2022 Mar; 142():105236. PubMed ID: 35066445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Performance evaluation and validation of automated digital image analysis in peripheral blood cells morphology examination].
    Wang R; Yang MY; Zhang JY; Su HQ; Duan J; Mi J; Wang ML
    Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(4):261-266. PubMed ID: 35073674
    [No Abstract]   [Full Text] [Related]  

  • 15. Automatic patient-level recognition of four
    Guemas E; Routier B; Ghelfenstein-Ferreira T; Cordier C; Hartuis S; Marion B; Bertout S; Varlet-Marie E; Costa D; Pasquier G
    Microbiol Spectr; 2024 Feb; 12(2):e0144023. PubMed ID: 38171008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning approach to peripheral leukocyte recognition.
    Wang Q; Bi S; Sun M; Wang Y; Wang D; Yang S
    PLoS One; 2019; 14(6):e0218808. PubMed ID: 31237896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic area classification in peripheral blood smears.
    Xiong W; Ong SH; Lim JH; Foong KW; Liu J; Racoceanu D; Chong AG; Tan KS
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1982-90. PubMed ID: 20199933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leukocyte deep learning classification assessment using Shapley additive explanations algorithm.
    Michalski A; Duraj K; Kupcewicz B
    Int J Lab Hematol; 2023 Jun; 45(3):297-302. PubMed ID: 36736355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. StainGAN: Learning a structural preserving translation for white blood cell images.
    Huang M; Wang T; Cai Y; Fan H; Li Z
    J Biophotonics; 2023 Nov; 16(11):e202300196. PubMed ID: 37496209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and recognition of leukocytes in peripheral blood: A deep learning approach.
    Reena MR; Ameer PM
    Comput Biol Med; 2020 Nov; 126():104034. PubMed ID: 33068806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.