These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38633266)

  • 1. Graph-based EEG approach for depression prediction: integrating time-frequency complexity and spatial topology.
    Liu W; Jia K; Wang Z
    Front Neurosci; 2024; 18():1367212. PubMed ID: 38633266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-temporal graph convolutional network for Alzheimer classification based on brain functional connectivity imaging of electroencephalogram.
    Shan X; Cao J; Huo S; Chen L; Sarrigiannis PG; Zhao Y
    Hum Brain Mapp; 2022 Dec; 43(17):5194-5209. PubMed ID: 35751844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG based depression recognition using improved graph convolutional neural network.
    Zhu J; Jiang C; Chen J; Lin X; Yu R; Li X; Hu B
    Comput Biol Med; 2022 Sep; 148():105815. PubMed ID: 35917638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TSANN-TG: Temporal-Spatial Attention Neural Networks with Task-Specific Graph for EEG Emotion Recognition.
    Jiang C; Dai Y; Ding Y; Chen X; Li Y; Tang Y
    Brain Sci; 2024 May; 14(5):. PubMed ID: 38790494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-based high-performance depression state recognition.
    Wang Z; Hu C; Liu W; Zhou X; Zhao X
    Front Neurosci; 2023; 17():1301214. PubMed ID: 38371369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal.
    Liu W; Jia K; Wang Z; Ma Z
    Brain Sci; 2022 May; 12(5):. PubMed ID: 35625016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of graph frequency attention convolutional neural networks in depression treatment response.
    Lu Z; Wang J; Wang F; Wu Z
    Front Psychiatry; 2023; 14():1244208. PubMed ID: 38045613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMGCN-L: an adaptive multi-time-window graph convolutional network with long-short-term memory for depression detection.
    Wang HG; Meng QH; Jin LC; Hou HR
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37844566
    [No Abstract]   [Full Text] [Related]  

  • 9. STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition.
    Li J; Pan W; Huang H; Pan J; Wang F
    Front Hum Neurosci; 2023; 17():1169949. PubMed ID: 37125349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal transformer-spatial graph convolutional network: an intelligent classification model for anti N-methyl-D-aspartate receptor encephalitis based on electroencephalogram signal.
    Dang R; Yu T; Hu B; Wang Y; Pan Z; Luo R; Wang Q
    Front Neurosci; 2023; 17():1223077. PubMed ID: 37700752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion recognition using spatial-temporal EEG features through convolutional graph attention network.
    Li Z; Zhang G; Wang L; Wei J; Dang J
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36720164
    [No Abstract]   [Full Text] [Related]  

  • 12. Brain Topology Modeling With EEG-Graphs for Auditory Spatial Attention Detection.
    Cai S; Schultz T; Li H
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):171-182. PubMed ID: 37432835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCC-MPGCN: self-attention coherence clustering based on multi-pooling graph convolutional network for EEG emotion recognition.
    Zhao H; Liu J; Shen Z; Yan J
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35354132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Network Using Dynamic Graph Convolution and Temporal Self-Attention for EEG-Based Emotion Recognition.
    Cheng C; Yu Z; Zhang Y; Feng L
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37831554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing brain connectivity: graph embeddings for EEG representation learning and comparative analysis of structural and functional connectivity.
    Almohammadi A; Wang YK
    Front Neurosci; 2023; 17():1288433. PubMed ID: 38264495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition.
    Zhang J; Zhang X; Chen G; Zhao Q
    Brain Sci; 2022 Dec; 12(12):. PubMed ID: 36552109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-attention-based convolutional neural network and time-frequency common spatial pattern for enhanced motor imagery classification.
    Zhang R; Liu G; Wen Y; Zhou W
    J Neurosci Methods; 2023 Oct; 398():109953. PubMed ID: 37611877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain functional network feature extraction method based on directed transfer function and graph theory for MI-BCI decoding tasks.
    Ma P; Dong C; Lin R; Liu H; Lei D; Chen X; Liu H
    Front Neurosci; 2024; 18():1306283. PubMed ID: 38586195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism.
    Feng L; Cheng C; Zhao M; Deng H; Zhang Y
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5406-5417. PubMed ID: 35969553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion recognition of EEG signals based on contrastive learning graph convolutional model.
    Zhang Y; Liao Y; Chen W; Zhang X; Huang L
    J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39151459
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.