These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38633786)

  • 1. Rest the Brain to Learn New Gait Patterns after Stroke.
    Krishnan C; Augenstein TE; Claflin ES; Hemsley CR; Washabaugh EP; Ranganathan R
    medRxiv; 2024 Apr; ():. PubMed ID: 38633786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning new gait patterns: Age-related differences in skill acquisition and interlimb transfer.
    Krishnan C; Washabaugh EP; Reid CE; Althoen MM; Ranganathan R
    Exp Gerontol; 2018 Oct; 111():45-52. PubMed ID: 29981399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning and interlimb transfer of new gait patterns are facilitated by distributed practice across days.
    Krishnan C
    Gait Posture; 2019 May; 70():84-89. PubMed ID: 30831544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Necessity and Content of Swing Phase Gait Coordination Training Post Stroke; A Case Report.
    McCabe JP; Roenigk K; Daly JJ
    Brain Sci; 2021 Nov; 11(11):. PubMed ID: 34827497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.
    Krishnan C; Ranganathan R; Dhaher YY; Rymer WZ
    PLoS One; 2013; 8(10):e77370. PubMed ID: 24146986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
    Krishnan C; Ranganathan R; Tetarbe M
    Gait Posture; 2017 Jul; 56():24-30. PubMed ID: 28482202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated adaptation and de-adaptation to the pelvis resistance force facilitate retention of motor learning in stroke survivors.
    Park SH; Yan S; Dee W; Reed R; Roth EJ; Rymer WZ; Wu M
    J Neurophysiol; 2022 Jun; 127(6):1642-1654. PubMed ID: 35583975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor Performance But Neither Motor Learning Nor Motor Consolidation Are Impaired in Chronic Cerebellar Stroke Patients.
    Hermsdorf F; Fricke C; Stockert A; Classen J; Rumpf JJ
    Cerebellum; 2020 Apr; 19(2):275-285. PubMed ID: 31997138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of explicit processes during a visually guided locomotor learning task predicts 24-h retention after stroke.
    French MA; Morton SM; Reisman DS
    J Neurophysiol; 2021 Jan; 125(1):211-222. PubMed ID: 33174517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury.
    Chisholm AE; Qaiser T; Williams AMM; Eginyan G; Lam T
    J Neurophysiol; 2019 Mar; 121(3):1078-1084. PubMed ID: 30726165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force control predicts fine motor dexterity in high-functioning stroke survivors.
    Patel P; Kaingade SR; Wilcox A; Lodha N
    Neurosci Lett; 2020 Jun; 729():135015. PubMed ID: 32360934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke.
    Cherry-Allen KM; Statton MA; Celnik PA; Bastian AJ
    Neurorehabil Neural Repair; 2018 Sep; 32(9):810-820. PubMed ID: 30086670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning new gait patterns is enhanced by specificity of training rather than progression of task difficulty.
    Krishnan C; Dharia AK; Augenstein TE; Washabaugh EP; Reid CE; Brown SR; Ranganathan R
    J Biomech; 2019 May; 88():33-37. PubMed ID: 30905405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.
    Charalambous CC; Alcantara CC; French MA; Li X; Matt KS; Kim HE; Morton SM; Reisman DS
    J Physiol; 2018 May; 596(10):1999-2016. PubMed ID: 29569729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning the spatial features of a locomotor task is slowed after stroke.
    Tyrell CM; Helm E; Reisman DS
    J Neurophysiol; 2014 Jul; 112(2):480-9. PubMed ID: 24790172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors.
    Patel P; Bhatt T
    Top Stroke Rehabil; 2014; 21(4):347-57. PubMed ID: 25150667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Implicit and Explicit Motor Learning in Gait Rehabilitation of People After Stroke: Protocol for a Randomized Controlled Trial.
    Jie LJ; Kleynen M; Meijer K; Beurskens A; Braun S
    JMIR Res Protoc; 2018 May; 7(5):e142. PubMed ID: 29793902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength or Motor Control: What Matters in High-Functioning Stroke?
    Lodha N; Patel P; Casamento-Moran A; Hays E; Poisson SN; Christou EA
    Front Neurol; 2018; 9():1160. PubMed ID: 30687217
    [No Abstract]   [Full Text] [Related]  

  • 20. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change?
    Boyd LA; Vidoni ED; Wessel BD
    Neurosci Lett; 2010 Sep; 482(1):21-5. PubMed ID: 20609381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.