BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38633987)

  • 1. Quantum-assisted fragment-based automated structure generator (QFASG) for small molecule design: an
    Evteev S; Ivanenkov Y; Semenov I; Malkov M; Mazaleva O; Bodunov A; Bezrukov D; Sidorenko D; Terentiev V; Malyshev A; Zagribelnyy B; Korzhenevskaya A; Aliper A; Zhavoronkov A
    Front Chem; 2024; 12():1382512. PubMed ID: 38633987
    [No Abstract]   [Full Text] [Related]  

  • 2. Recent Advances in Automated Structure-Based De Novo Drug Design.
    Tang Y; Moretti R; Meiler J
    J Chem Inf Model; 2024 Mar; 64(6):1794-1805. PubMed ID: 38485516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Applied to Ligand-Based De Novo Drug Design.
    Palazzesi F; Pozzan A
    Methods Mol Biol; 2022; 2390():273-299. PubMed ID: 34731474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence, Machine Learning, and Deep Learning in Real-Life Drug Design Cases.
    Muller C; Rabal O; Diaz Gonzalez C
    Methods Mol Biol; 2022; 2390():383-407. PubMed ID: 34731478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method.
    Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T
    J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based
    Li Y; Pei J; Lai L
    Chem Sci; 2021 Oct; 12(41):13664-13675. PubMed ID: 34760151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GENERA: A Combined Genetic/Deep-Learning Algorithm for Multiobjective Target-Oriented De Novo Design.
    Lamanna G; Delre P; Marcou G; Saviano M; Varnek A; Horvath D; Mangiatordi GF
    J Chem Inf Model; 2023 Aug; 63(16):5107-5119. PubMed ID: 37556857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-activity relationship: promising advances in drug discovery platforms.
    Wang T; Wu MB; Lin JP; Yang LR
    Expert Opin Drug Discov; 2015 Dec; 10(12):1283-300. PubMed ID: 26358617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum computing for near-term applications in generative chemistry and drug discovery.
    Pyrkov A; Aliper A; Bezrukov D; Lin YC; Polykovskiy D; Kamya P; Ren F; Zhavoronkov A
    Drug Discov Today; 2023 Aug; 28(8):103675. PubMed ID: 37331692
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    de Souza Neto LR; Moreira-Filho JT; Neves BJ; Maidana RLBR; Guimarães ACR; Furnham N; Andrade CH; Silva FP
    Front Chem; 2020; 8():93. PubMed ID: 32133344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep generative models for ligand-based de novo design applied to multi-parametric optimization.
    Perron Q; Mirguet O; Tajmouati H; Skiredj A; Rojas A; Gohier A; Ducrot P; Bourguignon MP; Sansilvestri-Morel P; Do Huu N; Gellibert F; Gaston-Mathé Y
    J Comput Chem; 2022 Apr; 43(10):692-703. PubMed ID: 35218219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo molecular design and generative models.
    Meyers J; Fabian B; Brown N
    Drug Discov Today; 2021 Nov; 26(11):2707-2715. PubMed ID: 34082136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FastGrow: on-the-fly growing and its application to DYRK1A.
    Penner P; Martiny V; Bellmann L; Flachsenberg F; Gastreich M; Theret I; Meyer C; Rarey M
    J Comput Aided Mol Des; 2022 Sep; 36(9):639-651. PubMed ID: 35989379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linkers in fragment-based drug design: an overview of the literature.
    Grenier D; Audebert S; Preto J; Guichou JF; Krimm I
    Expert Opin Drug Discov; 2023; 18(9):987-1009. PubMed ID: 37466331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry.
    Kao PY; Yang YC; Chiang WY; Hsiao JY; Cao Y; Aliper A; Ren F; Aspuru-Guzik A; Zhavoronkov A; Hsieh MH; Lin YC
    J Chem Inf Model; 2023 Jun; 63(11):3307-3318. PubMed ID: 37171372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A; Müller AT; Huisman BJH; Fuchs JA; Schneider P; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29095571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment based drug design: from experimental to computational approaches.
    Kumar A; Voet A; Zhang KY
    Curr Med Chem; 2012; 19(30):5128-47. PubMed ID: 22934764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.