BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38634420)

  • 41. Detection and Molecular Characterization of Resistance to the Dicarboximide and Benzamide Fungicides in Botrytis cinerea From Tomato in Hubei Province, China.
    Adnan M; Hamada MS; Li GQ; Luo CX
    Plant Dis; 2018 Jul; 102(7):1299-1306. PubMed ID: 30673571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of SHAM on the Sensitivity of
    Liang H; Li J; Luo C; Li J; Zhu FX
    Plant Dis; 2019 Aug; 103(8):1884-1888. PubMed ID: 31161931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptomic Analysis of Resistant and Wild-Type
    Liu M; Peng J; Wang X; Zhang W; Zhou Y; Wang H; Li X; Yan J; Duan L
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674501
    [No Abstract]   [Full Text] [Related]  

  • 44. The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil.
    Vermeulen T; Schoonbeek H; De Waard MA
    Pest Manag Sci; 2001 May; 57(5):393-402. PubMed ID: 11374155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fungal adaptation to contemporary fungicide applications: the case of Botrytis cinerea populations from Champagne vineyards (France).
    Walker AS; Ravigne V; Rieux A; Ali S; Carpentier F; Fournier E
    Mol Ecol; 2017 Apr; 26(7):1919-1935. PubMed ID: 28231406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit.
    Jurick WM; Macarisin O; Gaskins VL; Park E; Yu J; Janisiewicz W; Peter KA
    Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone.
    Xu T; Wang YT; Liang WS; Yao F; Li YH; Li DR; Wang H; Wang ZY
    J Microbiol; 2013 Jun; 51(3):352-8. PubMed ID: 23620351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea.
    Fillinger S; Leroux P; Auclair C; Barreau C; Al Hajj C; Debieu D
    Antimicrob Agents Chemother; 2008 Nov; 52(11):3933-40. PubMed ID: 18779358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in Botrytis cinerea.
    Inoue K; Tsurumi T; Ishii H; Park P; Ikeda K
    FEMS Microbiol Lett; 2012 Jan; 326(1):83-90. PubMed ID: 22092932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains.
    Billard A; Fillinger S; Leroux P; Lachaise H; Beffa R; Debieu D
    Pest Manag Sci; 2012 May; 68(5):684-91. PubMed ID: 22045588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides.
    Chen SN; Luo CX; Hu MJ; Schnabel G
    Phytopathology; 2016 Sep; 106(9):997-1005. PubMed ID: 27161219
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A non-Mendelian inheritance of resistance to strobilurin fungicides in Ustilago maydis.
    Ziogas BN; Markoglou AN; Tzima A
    Pest Manag Sci; 2002 Sep; 58(9):908-16. PubMed ID: 12233180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of mutants with single and combined Q
    Young DH; Meunier B
    Pestic Biochem Physiol; 2023 Jan; 189():105313. PubMed ID: 36549825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resistance to Increasing Chemical Classes of Fungicides by Virtue of "Selection by Association" in Botrytis cinerea.
    Hu MJ; Cox KD; Schnabel G
    Phytopathology; 2016 Dec; 106(12):1513-1520. PubMed ID: 27503370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochemical and genetic characterization of Botrytis cinerea laboratory mutants resistant to propamidine.
    Zhang X; Huang K; Zhang M; Jiang L; Wang Y; Feng J; Ma Z
    Pest Manag Sci; 2022 Dec; 78(12):5281-5292. PubMed ID: 36054525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold.
    Rodríguez A; Acosta A; Rodríguez C
    World J Microbiol Biotechnol; 2014 Sep; 30(9):2397-406. PubMed ID: 24817605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological characteristics and resistance analysis of the novel fungicide SYP-1620 against Botrytis cinerea.
    Zhang X; Wu D; Duan Y; Ge C; Wang J; Zhou M; Chen C
    Pestic Biochem Physiol; 2014 Sep; 114():72-8. PubMed ID: 25175653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple.
    Yin YN; Kim YK; Xiao CL
    Phytopathology; 2012 Mar; 102(3):315-22. PubMed ID: 22085296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China.
    Ma D; Jiang J; He L; Cui K; Mu W; Liu F
    Plant Dis; 2018 Sep; 102(9):1725-1732. PubMed ID: 30125205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.