These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38634463)

  • 1. Recent progress in the study of integrated solar cell-energy storage systems.
    Lu Y; Chen M; Zhu G; Zhang Y
    Nanoscale; 2024 May; 16(18):8778-8790. PubMed ID: 38634463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors.
    Tran N; Choi HW; Tran QN
    Polymers (Basel); 2024 Oct; 16(19):. PubMed ID: 39408558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review on the Progress, Challenges, and Performances of Tin-Based Perovskite Solar Cells.
    Lye YE; Chan KY; Ng ZN
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress on Integrated Energy Conversion and Storage Systems.
    Luo B; Ye D; Wang L
    Adv Sci (Weinh); 2017 Sep; 4(9):1700104. PubMed ID: 28932673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prospect of supercapacitors in integrated energy harvesting and storage systems.
    Sinha P; Sharma A
    Nanotechnology; 2024 Jul; 35(38):. PubMed ID: 38904267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices.
    Yang G; Yang W; Gu H; Fu Y; Wang B; Cai H; Xia J; Zhang N; Liang C; Xing G; Yang S; Chen Y; Huang W
    Adv Mater; 2023 Nov; 35(44):e2300383. PubMed ID: 36906920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles and Developments of Integrated Solar Flow Batteries.
    Li W; Jin S
    Acc Chem Res; 2020 Nov; 53(11):2611-2621. PubMed ID: 33085467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage.
    Lv J; Xie J; Mohamed AGA; Zhang X; Wang Y
    Chem Soc Rev; 2022 Feb; 51(4):1511-1528. PubMed ID: 35137737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends.
    Mousavi SM; Hashemi SA; Kalashgrani MY; Gholami A; Mazaheri Y; Riazi M; Kurniawan D; Arjmand M; Madkhali O; Aljabri MD; Rahman MM; Chiang WH
    Chem Rec; 2024 Jan; 24(1):e202200266. PubMed ID: 36995072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives.
    Zhang X; Song WL; Tu J; Wang J; Wang M; Jiao S
    Adv Sci (Weinh); 2021 Jul; 8(14):2100552. PubMed ID: 34306984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.
    Lindblad P; Lindberg P; Oliveira P; Stensjö K; Heidorn T
    Ambio; 2012; 41 Suppl 2(Suppl 2):163-8. PubMed ID: 22434446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review on recycling energy resources and sustainability.
    Massoud M; Vega G; Subburaj A; Partheepan J
    Heliyon; 2023 Apr; 9(4):e15107. PubMed ID: 37095955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable renewable energy penetration impact on productivity: A case study of poultry farming.
    Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É
    PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.
    Armaroli N; Balzani V
    Chemistry; 2016 Jan; 22(1):32-57. PubMed ID: 26584653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of 2D material families in energy harvesting: An editorial overview.
    Raghavan P; Ahn JH; Shelke M
    J Mater Res; 2022; 37(22):3857-3864. PubMed ID: 36193107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving Net-Zero Emissions with Solid Oxide Electrolysis Cells: The Power-to-X Approach.
    Tian Y; Manzotti A; Wang Y; Song Y; Fu XZ; Chi B; Ciucci F
    J Phys Chem Lett; 2023 May; 14(20):4688-4695. PubMed ID: 37171053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal oxides as a cathode for indispensable Na-ion batteries.
    Kanwade A; Gupta S; Kankane A; Tiwari MK; Srivastava A; Kumar Satrughna JA; Chand Yadav S; Shirage PM
    RSC Adv; 2022 Aug; 12(36):23284-23310. PubMed ID: 36090429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancements in solar technologies for sustainable development of agricultural sector in India: a comprehensive review on challenges and opportunities.
    Thakur AK; Singh R; Gehlot A; Kaviti AK; Aseer R; Suraparaju SK; Natarajan SK; Sikarwar VS
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):43607-43634. PubMed ID: 35419684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.