BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38634495)

  • 1. Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA.
    Granja-DelRío A; Cabria I
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38634495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks.
    Ahmed A; Seth S; Purewal J; Wong-Foy AG; Veenstra M; Matzger AJ; Siegel DJ
    Nat Commun; 2019 Apr; 10(1):1568. PubMed ID: 30952862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage in M(BDC)(TED)
    Xuan Huynh NT; Ngan VT; Yen Ngoc NT; Chihaia V; Son DN
    RSC Adv; 2024 Jun; 14(28):19891-19902. PubMed ID: 38903680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Open Metal Site-Free
    Zhang ZH; Fang H; Xue DX; Bai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44956-44963. PubMed ID: 34498839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of hypothetical metal-organic frameworks for H2 storage.
    Gomez DA; Toda J; Sastre G
    Phys Chem Chem Phys; 2014 Sep; 16(35):19001-10. PubMed ID: 25093656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.
    Roussel T; Bichara C; Gubbins KE; Pellenq RJ
    J Chem Phys; 2009 May; 130(17):174717. PubMed ID: 19425808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of hydrogen sulfide from a binary mixture with methane gas, using IRMOF-1: a theoretical investigation.
    Rodrigues NM; Dos Santos LJ; Rodrigues ESM; Martins JBL
    J Mol Model; 2021 Aug; 27(9):240. PubMed ID: 34363542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jun; 128(25):8136-7. PubMed ID: 16787068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-functionalized metal-organic frameworks that show >10 wt% H2 uptake at ambient temperature.
    Han SS; Jung DH; Choi SH; Heo J
    Chemphyschem; 2013 Aug; 14(12):2698-703. PubMed ID: 23784818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites.
    Baykasoglu C; Mert H; Deniz CU
    J Mol Graph Model; 2021 Jul; 106():107909. PubMed ID: 33848950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GCMC investigation into adamantane-based aromatic frameworks with diamond-like structure as high-capacity hydrogen storage materials.
    Li XD; Zhang H; Tang YJ; Cheng XL
    Phys Chem Chem Phys; 2012 Feb; 14(7):2391-8. PubMed ID: 22245956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grand Canonical Monte Carlo Simulations to Determine the Optimal Interlayer Distance of a Graphene Slit-Shaped Pore for Adsorption of Methane, Hydrogen and their Equimolar Mixture.
    Vekeman J; Bahamon D; García Cuesta I; Faginas-Lago N; Sánchez-Marín J; Sánchez de Merás A; Vega LF
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption.
    Singh SK; Sose AT; Wang F; Bejagam KK; Deshmukh SA
    J Chem Theory Comput; 2023 Oct; 19(19):6686-6703. PubMed ID: 37756641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification Strategy for Enhanced NO
    Raptis D; Livas C; Stavroglou G; Giappa RM; Tylianakis E; Stergiannakos T; Froudakis GE
    Molecules; 2022 May; 27(11):. PubMed ID: 35684386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of High-Performing Metal-Organic Frameworks for On-Board Methane Storage and Delivery via LNG-ANG Coupling: High-Throughput Screening, Machine Learning, and Experimental Validation.
    Kim SY; Han S; Lee S; Kang JH; Yoon S; Park W; Shin MW; Kim J; Chung YG; Bae YS
    Adv Sci (Weinh); 2022 Jul; 9(21):e2201559. PubMed ID: 35524582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Jan; 110(2):655-8. PubMed ID: 16471581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jan; 128(3):726-7. PubMed ID: 16417355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks.
    Frost H; Düren T; Snurr RQ
    J Phys Chem B; 2006 May; 110(19):9565-70. PubMed ID: 16686503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.