These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 386346)
1. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]
2. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
3. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS; Schachman HK J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547 [TBL] [Abstract][Full Text] [Related]
4. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains. Johnson RS; Schachman HK Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418 [TBL] [Abstract][Full Text] [Related]
5. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
6. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. Suter P; Rosenbusch JP J Biol Chem; 1977 Nov; 252(22):8136-41. PubMed ID: 334776 [TBL] [Abstract][Full Text] [Related]
7. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
8. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. Newell JO; Markby DW; Schachman HK J Biol Chem; 1989 Feb; 264(5):2476-81. PubMed ID: 2644262 [TBL] [Abstract][Full Text] [Related]
9. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
10. Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains. Johnson RS; Schachman HK J Biol Chem; 1983 Mar; 258(6):3528-38. PubMed ID: 6833212 [TBL] [Abstract][Full Text] [Related]
11. Heterotropic effectors promote a global conformational change in aspartate transcarbamoylase. Eisenstein E; Markby DW; Schachman HK Biochemistry; 1990 Apr; 29(15):3724-31. PubMed ID: 2187530 [TBL] [Abstract][Full Text] [Related]
13. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E; Markby DW; Schachman HK Proc Natl Acad Sci U S A; 1989 May; 86(9):3094-8. PubMed ID: 2566165 [TBL] [Abstract][Full Text] [Related]
14. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly. Zhang P; Schachman HK Protein Sci; 1996 Jul; 5(7):1290-300. PubMed ID: 8819162 [TBL] [Abstract][Full Text] [Related]
15. Discrimination between nucleotide effector responses of aspartate transcarbamoylase due to a single site substitution in the allosteric binding site. Corder TS; Wild JR J Biol Chem; 1989 May; 264(13):7425-30. PubMed ID: 2651439 [TBL] [Abstract][Full Text] [Related]
16. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Sakash JB; Chan RS; Tsuruta H; Kantrowitz ER J Biol Chem; 2000 Jan; 275(2):752-8. PubMed ID: 10625604 [TBL] [Abstract][Full Text] [Related]
17. Site-directed alterations to the geometry of the aspartate transcarbamoylase zinc domain: selective alteration to regulation by heterotropic ligands, isoelectric point, and stability in urea. Strang CJ; Wales ME; Brown DM; Wild JR Biochemistry; 1993 Apr; 32(16):4156-67. PubMed ID: 8476846 [TBL] [Abstract][Full Text] [Related]
18. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent. Chan WW; Enns CA Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237 [TBL] [Abstract][Full Text] [Related]
19. Properties of hybrid aspartate transcarbamoylase formed with native subunits from divergent bacteria. Shanley MS; Foltermann KF; O'Donovan GA; Wild JR J Biol Chem; 1984 Oct; 259(20):12672-7. PubMed ID: 6386799 [TBL] [Abstract][Full Text] [Related]
20. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. Ke HM; Lipscomb WN; Cho YJ; Honzatko RB J Mol Biol; 1988 Dec; 204(3):725-47. PubMed ID: 3066911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]