These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38634635)

  • 1. Mechanically Tunable Transmittance Convection Shield for Dynamic Radiative Cooling.
    Chen Q; Huang X; Lu Y; Xu H; Zhao D
    ACS Appl Mater Interfaces; 2024 May; 16(17):21807-21817. PubMed ID: 38634635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive and Dynamic Phase-Change-Based Radiative Cooling in Outdoor Weather.
    Xu X; Gu J; Zhao H; Zhang X; Dou S; Li Y; Zhao J; Zhan Y; Li X
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14313-14320. PubMed ID: 35302341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving.
    Li Y; Chen X; Yu L; Pang D; Yan H; Chen M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4122-4131. PubMed ID: 36642885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable and Tunable Radiative Cooling: Mechanisms, Applications, and Perspectives.
    Zhao X; Li J; Dong K; Wu J
    ACS Nano; 2024 Jul; 18(28):18118-18128. PubMed ID: 38951984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daytime Radiative Cooling Coating Based on the Y
    Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-adaptive radiative coating for all-season household thermal regulation.
    Tang K; Dong K; Li J; Gordon MP; Reichertz FG; Kim H; Rho Y; Wang Q; Lin CY; Grigoropoulos CP; Javey A; Urban JJ; Yao J; Levinson R; Wu J
    Science; 2021 Dec; 374(6574):1504-1509. PubMed ID: 34914515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile and Effective Design for Dynamic Thermal Management Based on Synchronous Solar and Thermal Radiation Regulation.
    Guo N; Yu L; Shi C; Yan H; Chen M
    Nano Lett; 2024 Jan; 24(4):1447-1453. PubMed ID: 38252892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Smart Window with Passive Radiative Cooling and Switchable Near-Infrared Light Transmittance via Molecular Engineering.
    Ma C; Zhang Z; Yang Y; Wang P; Yu M; Gao Y; Wang Q; Xiao J; Zou C; Yang H
    ACS Appl Mater Interfaces; 2024 May; 16(19):25343-25352. PubMed ID: 38711173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting.
    Shi S; Lv P; Valenzuela C; Li B; Liu Y; Wang L; Feng W
    Small; 2023 Sep; 19(39):e2301957. PubMed ID: 37231557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically Switchable Multifunctional Device for Regulating Passive Radiative Cooling and Solar Heating.
    Tao S; Han J; Xu Y; Fang Z; Ni Y; Fang L; Lu C; Xu Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17123-17133. PubMed ID: 36971527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling.
    Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L
    Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobic Composite Coatings Can Achieve Durability and Efficient Radiative Cooling of Energy-Saving Buildings.
    Zhou W; Ma X; Liu M; Niu J; Wang S; Li S; Wang W; Fan Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):46703-46718. PubMed ID: 39177497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.