BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38634855)

  • 1. Tools and methods for high-throughput single-cell imaging with the mother machine.
    Thiermann R; Sandler M; Ahir G; Sauls JT; Schroeder J; Brown S; Le Treut G; Si F; Li D; Wang JD; Jun S
    Elife; 2024 Apr; 12():. PubMed ID: 38634855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tools and methods for high-throughput single-cell imaging with the mother machine.
    Thiermann R; Sandler M; Ahir G; Sauls JT; Schroeder JW; Brown SD; Le Treut G; Si F; Li D; Wang JD; Jun S
    bioRxiv; 2024 Feb; ():. PubMed ID: 37066401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments.
    Ollion J; Elez M; Robert L
    Nat Protoc; 2019 Nov; 14(11):3144-3161. PubMed ID: 31554957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
    Lugagne JB; Lin H; Dunlop MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007673. PubMed ID: 32282792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.
    O'Connor OM; Alnahhas RN; Lugagne JB; Dunlop MJ
    PLoS Comput Biol; 2022 Jan; 18(1):e1009797. PubMed ID: 35041653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cell Segmentation/Tracking Tool Based on Machine Learning.
    Deter HS; Dies M; Cameron CC; Butzin NC; Buceta J
    Methods Mol Biol; 2019; 2040():399-422. PubMed ID: 31432490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.
    Sachs CC; Grünberger A; Helfrich S; Probst C; Wiechert W; Kohlheyer D; Nöh K
    PLoS One; 2016; 11(9):e0163453. PubMed ID: 27661996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image analysis driven single-cell analytics for systems microbiology.
    Balomenos AD; Tsakanikas P; Aspridou Z; Tampakaki AP; Koutsoumanis KP; Manolakos ES
    BMC Syst Biol; 2017 Apr; 11(1):43. PubMed ID: 28376782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MMHelper: An automated framework for the analysis of microscopy images acquired with the mother machine.
    Smith A; Metz J; Pagliara S
    Sci Rep; 2019 Jul; 9(1):10123. PubMed ID: 31300741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LIM Tracker: a software package for cell tracking and analysis with advanced interactivity.
    Aragaki H; Ogoh K; Kondo Y; Aoki K
    Sci Rep; 2022 Feb; 12(1):2702. PubMed ID: 35177675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Pipeline for Nucleus Segmentation.
    Zaki G; Gudla PR; Lee K; Kim J; Ozbun L; Shachar S; Gadkari M; Sun J; Fraser IDC; Franco LM; Misteli T; Pegoraro G
    Cytometry A; 2020 Dec; 97(12):1248-1264. PubMed ID: 33141508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extensible software platform for interdisciplinary cardiovascular imaging research.
    Huellebrand M; Messroghli D; Tautz L; Kuehne T; Hennemuth A
    Comput Methods Programs Biomed; 2020 Feb; 184():105277. PubMed ID: 31891904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PrestoCell: A persistence-based clustering approach for rapid and robust segmentation of cellular morphology in three-dimensional data.
    Wu Y; Brust-Mascher I; Gareau MG; De Loera JA; Reardon C
    PLoS One; 2024; 19(2):e0299006. PubMed ID: 38422108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airway Cells 3D Reconstruction via Manual and Machine-Learning Aided Segmentation of Volume EM Datasets.
    Vijayakumaran A; Abuammar A; Medagedara O; Narayan K; Mennella V
    Methods Mol Biol; 2024; 2725():131-146. PubMed ID: 37856022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Microscopy Image Segmentation and Analysis with Machine Learning.
    Bilodeau A; Bouchard C; Lavoie-Cardinal F
    Methods Mol Biol; 2022; 2440():349-365. PubMed ID: 35218549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding and following: a deep learning-based pipeline for tracking platelets during thrombus formation
    McGovern AS; Larsson P; Tarlac V; Setiabakti N; Shabani Mashcool L; Hamilton JR; Boknäs N; Nunez-Iglesias J
    Platelets; 2024 Dec; 35(1):2344512. PubMed ID: 38722090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An end-to-end software solution for the analysis of high-throughput single-cell migration data.
    Masuzzo P; Huyck L; Simiczyjew A; Ampe C; Martens L; Van Troys M
    Sci Rep; 2017 Feb; 7():42383. PubMed ID: 28205527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An end-to-end workflow for multiplexed image processing and analysis.
    Windhager J; Zanotelli VRT; Schulz D; Meyer L; Daniel M; Bodenmiller B; Eling N
    Nat Protoc; 2023 Nov; 18(11):3565-3613. PubMed ID: 37816904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.