BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38635077)

  • 1. Disrupting FKF1 homodimerization increases FT transcript levels in the evening by enhancing CO stabilization.
    Cho SW; Lokhandwala J; Park JS; Kang HW; Choi M; Yang HQ; Imaizumi T; Zoltowski BD; Song YH
    Plant Cell Rep; 2024 Apr; 43(5):121. PubMed ID: 38635077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering.
    Lee BD; Kim MR; Kang MY; Cha JY; Han SH; Nawkar GM; Sakuraba Y; Lee SY; Imaizumi T; McClung CR; Kim WY; Paek NC
    Nat Commun; 2017 Dec; 8(1):2259. PubMed ID: 29273730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering.
    Song YH; Estrada DA; Johnson RS; Kim SK; Lee SY; MacCoss MJ; Imaizumi T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17672-7. PubMed ID: 25422419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoperiod sensing system for timing of flowering in plants.
    Lee BD; Cha JY; Kim MR; Paek NC; Kim WY
    BMB Rep; 2018 Apr; 51(4):163-164. PubMed ID: 29580375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent suppression of COP1 multimeric complex formation is determined by the blue-light receptor FKF1 in Arabidopsis.
    Lee BD; Cha JY; Kim MR; Shin GI; Paek NC; Kim WY
    Biochem Biophys Res Commun; 2019 Jan; 508(1):191-197. PubMed ID: 30471853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE.
    Hwang DY; Park S; Lee S; Lee SS; Imaizumi T; Song YH
    Mol Cells; 2019 Oct; 42(10):693-701. PubMed ID: 31617339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering.
    Song YH; Smith RW; To BJ; Millar AJ; Imaizumi T
    Science; 2012 May; 336(6084):1045-9. PubMed ID: 22628657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1.
    Takase T; Nishiyama Y; Tanihigashi H; Ogura Y; Miyazaki Y; Yamada Y; Kiyosue T
    Plant J; 2011 Aug; 67(4):608-21. PubMed ID: 21518052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis.
    Yan J; Li X; Zeng B; Zhong M; Yang J; Yang P; Li X; He C; Lin J; Liu X; Zhao X
    J Integr Plant Biol; 2020 Nov; 62(11):1717-1740. PubMed ID: 32427421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.
    Sawa M; Nusinow DA; Kay SA; Imaizumi T
    Science; 2007 Oct; 318(5848):261-5. PubMed ID: 17872410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis.
    Liu LJ; Zhang YC; Li QH; Sang Y; Mao J; Lian HL; Wang L; Yang HQ
    Plant Cell; 2008 Feb; 20(2):292-306. PubMed ID: 18296627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic flowering occurs under internal and external coincidence.
    Sawa M; Kay SA; Imaizumi T
    Plant Signal Behav; 2008 Apr; 3(4):269-71. PubMed ID: 19704651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.
    Imaizumi T; Tran HG; Swartz TE; Briggs WR; Kay SA
    Nature; 2003 Nov; 426(6964):302-6. PubMed ID: 14628054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis.
    Hajdu A; Ádám É; Sheerin DJ; Dobos O; Bernula P; Hiltbrunner A; Kozma-Bognár L; Nagy F
    Plant J; 2015 Sep; 83(5):794-805. PubMed ID: 26120968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time.
    Zhang B; Wang L; Zeng L; Zhang C; Ma H
    Genes Dev; 2015 May; 29(9):975-87. PubMed ID: 25934507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 Homolog
    Shibuya T; Nishiyama M; Kato K; Kanayama Y
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis CIB3 regulates photoperiodic flowering in an FKF1-dependent way.
    Zhou L; Lu Y; Huang J; Sha Z; Mo W; Xue J; Ma S; Shi W; Yang Z; Gao J; Bian M
    Biosci Biotechnol Biochem; 2021 Mar; 85(4):765-774. PubMed ID: 33686404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.
    Sawa M; Kay SA
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11698-703. PubMed ID: 21709243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod.
    Han SH; Yoo SC; Lee BD; An G; Paek NC
    Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.