These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38635328)

  • 1. dCas9 Tells Tales: Probing Gene Function and Transcription Regulation in Cancer.
    Mohamad Zamberi NN; Abuhamad AY; Low TY; Mohtar MA; Syafruddin SE
    CRISPR J; 2024 Apr; 7(2):73-87. PubMed ID: 38635328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F; Koncz M; Eilers RE; Verschure PJ; Rots MG
    Methods Mol Biol; 2024; 2842():289-307. PubMed ID: 39012602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA.
    Woodward EA; Wang E; Wallis C; Sharma R; Tie AWJ; Murthy N; Blancafort P
    Methods Mol Biol; 2024; 2842():267-287. PubMed ID: 39012601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-based epigenome editing: mechanisms and applications.
    Fadul SM; Arshad A; Mehmood R
    Epigenomics; 2023 Nov; 15(21):1137-1155. PubMed ID: 37990877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 Aug; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
    Cai R; Lv R; Shi X; Yang G; Jin J
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants.
    Pan C; Sretenovic S; Qi Y
    Curr Opin Plant Biol; 2021 Apr; 60():101980. PubMed ID: 33401227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustered Regularly Interspaced Short Palindromic Repeats and Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein 9 System: Factors Affecting Precision Gene Editing Efficiency and Optimization Strategies.
    Li J; Tang C; Liang G; Tian H; Lai G; Wu Y; Liu S; Zhang W; Liu S; Shao H
    Hum Gene Ther; 2023 Dec; 34(23-24):1190-1203. PubMed ID: 37642232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.