BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 38635398)

  • 1. Protocol for automated N-glycan sequencing using mass spectrometry and computer-assisted intelligent fragmentation.
    Huang C; Wang H; Zhou J; Huang Y; Ren Y; Zhao K; Wang Y; Hou M; Zhang J; Liu Y; Ma X; Yan J; Bu D; Chai W; Sun S; Li Y
    STAR Protoc; 2024 Jun; 5(2):102976. PubMed ID: 38635398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum.
    Kumozaki S; Sato K; Sakakibara Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1267-74. PubMed ID: 26671799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Automated Identification of Glycan Branching Patterns Using Multistage Mass Spectrometry with Intelligent Precursor Selection.
    Sun S; Huang C; Wang Y; Liu Y; Zhang J; Zhou J; Gao F; Yang F; Chen R; Mulloy B; Chai W; Li Y; Bu D
    Anal Chem; 2018 Dec; 90(24):14412-14422. PubMed ID: 30444352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9-fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis.
    Wang C; Qiang S; Jin W; Song X; Zhang Y; Huang L; Wang Z
    J Proteomics; 2018 Sep; 187():47-58. PubMed ID: 29885470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Glycan Sequencing by Electronic Excitation Dissociation and Fixed-Charge Derivatization.
    Tang Y; Pu Y; Gao J; Hong P; Costello CE; Lin C
    Anal Chem; 2018 Mar; 90(6):3793-3801. PubMed ID: 29443510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of glycan branching patterns using multistage mass spectrometry with spectra tree analysis.
    Wang H; Zhang J; Dong J; Hou M; Pan W; Bu D; Zhou J; Zhang Q; Wang Y; Zhao K; Li Y; Huang C; Sun S
    J Proteomics; 2020 Apr; 217():103649. PubMed ID: 31978548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistage mass spectrometry with intelligent precursor selection for N-glycan branching pattern analysis.
    Huang C; Wang H; Bu D; Zhou J; Dong J; Zhang J; Gao H; Wang Y; Chai W; Sun S; Li Y
    Carbohydr Polym; 2020 Jun; 237():116122. PubMed ID: 32241449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for analyzing the biosynthesis and degradation of N-glycan precursors in mammalian cells.
    Harada Y; Nakajima K; Li S; Suzuki T; Taniguchi N
    STAR Protoc; 2021 Mar; 2(1):100316. PubMed ID: 33659899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GIPS-Mix for Accurate Identification of Isomeric Components in Glycan Mixtures Using Intelligent Group-Opting Strategy.
    Huang C; Hou M; Yan J; Wang H; Wang Y; Cao C; Wang Y; Gao H; Ma X; Zheng Y; Bu D; Chai W; Li Y; Sun S
    Anal Chem; 2023 Jan; 95(2):811-819. PubMed ID: 36547394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis.
    Gray CJ; Thomas B; Upton R; Migas LG; Eyers CE; Barran PE; Flitsch SL
    Biochim Biophys Acta; 2016 Aug; 1860(8):1688-709. PubMed ID: 26854953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional N-glycan and lipid analysis from tissues using MALDI-mass spectrometry imaging.
    Stanback AE; Conroy LR; Young LEA; Hawkinson TR; Markussen KH; Clarke HA; Allison DB; Sun RC
    STAR Protoc; 2021 Mar; 2(1):100304. PubMed ID: 33554139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexities and algorithms for glycan sequencing using tandem mass spectrometry.
    Shan B; Ma B; Zhang K; Lajoie G
    J Bioinform Comput Biol; 2008 Feb; 6(1):77-91. PubMed ID: 18324747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry.
    Morrison KA; Clowers BH
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1236-1241. PubMed ID: 28421405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permethylated N-glycan analysis with mass spectrometry.
    Lin Z; Lubman DM
    Methods Mol Biol; 2013; 1007():289-300. PubMed ID: 23666731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS.
    Harvey DJ
    Mass Spectrom Rev; 2020 Sep; 39(5-6):586-679. PubMed ID: 32329121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Automatic and Comprehensive Glycan Characterization by Online PGC-LC-EED MS/MS.
    Wei J; Tang Y; Bai Y; Zaia J; Costello CE; Hong P; Lin C
    Anal Chem; 2020 Jan; 92(1):782-791. PubMed ID: 31829560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry of N-linked glycans.
    Azadi P; Heiss C
    Methods Mol Biol; 2009; 534():37-51. PubMed ID: 19277537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for constructing glycan biosynthetic networks using glycowork.
    Lundstrøm J; Thomès L; Bojar D
    STAR Protoc; 2024 Jun; 5(2):102937. PubMed ID: 38630592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Software for automated interpretation of mass spectrometry data from glycans and glycopeptides.
    Woodin CL; Maxon M; Desaire H
    Analyst; 2013 May; 138(10):2793-803. PubMed ID: 23293784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.