These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38635400)

  • 21. Elongation factor P: Function and effects on bacterial fitness.
    Doerfel LK; Rodnina MV
    Biopolymers; 2013 Nov; 99(11):837-45. PubMed ID: 23828669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elongation Factor P and the Control of Translation Elongation.
    Rajkovic A; Ibba M
    Annu Rev Microbiol; 2017 Sep; 71():117-131. PubMed ID: 28886684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular evolution of protein-RNA mimicry as a mechanism for translational control.
    Katz A; Solden L; Zou SB; Navarre WW; Ibba M
    Nucleic Acids Res; 2014 Mar; 42(5):3261-71. PubMed ID: 24335280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential structural elements in tRNA(Pro) for EF-P-mediated alleviation of translation stalling.
    Katoh T; Wohlgemuth I; Nagano M; Rodnina MV; Suga H
    Nat Commun; 2016 May; 7():11657. PubMed ID: 27216360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conservation of bacterial protein synthesis machinery: initiation and elongation in Mycobacterium smegmatis.
    Bruell CM; Eichholz C; Kubarenko A; Post V; Katunin VI; Hobbie SN; Rodnina MV; Böttger EC
    Biochemistry; 2008 Aug; 47(34):8828-39. PubMed ID: 18672904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors.
    Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL
    Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional compatibility of elongation factors between mammalian mitochondrial and bacterial ribosomes: characterization of GTPase activity and translation elongation by hybrid ribosomes bearing heterologous L7/12 proteins.
    Terasaki M; Suzuki T; Hanada T; Watanabe K
    J Mol Biol; 2004 Feb; 336(2):331-42. PubMed ID: 14757048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM.
    Peil L; Starosta AL; Virumäe K; Atkinson GC; Tenson T; Remme J; Wilson DN
    Nat Chem Biol; 2012 Aug; 8(8):695-7. PubMed ID: 22706199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site.
    Starosta AL; Lassak J; Peil L; Atkinson GC; Virumäe K; Tenson T; Remme J; Jung K; Wilson DN
    Nucleic Acids Res; 2014; 42(16):10711-9. PubMed ID: 25143529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongation factor P is required to maintain proteome homeostasis at high growth rate.
    Tollerson R; Witzky A; Ibba M
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):11072-11077. PubMed ID: 30297417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nascent peptides that block protein synthesis in bacteria.
    Woolstenhulme CJ; Parajuli S; Healey DW; Valverde DP; Petersen EN; Starosta AL; Guydosh NR; Johnson WE; Wilson DN; Buskirk AR
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):E878-87. PubMed ID: 23431150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arginine-rhamnosylation as new strategy to activate translation elongation factor P.
    Lassak J; Keilhauer EC; Fürst M; Wuichet K; Gödeke J; Starosta AL; Chen JM; Søgaard-Andersen L; Rohr J; Wilson DN; Häussler S; Mann M; Jung K
    Nat Chem Biol; 2015 Apr; 11(4):266-70. PubMed ID: 25686373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Depletion of Escherichia coli 4.5S RNA leads to an increase in the amount of protein elongation factor EF-G associated with ribosomes.
    Nakamura K; Fujii Y; Shibata T; Yamane K
    Eur J Biochem; 1999 Jan; 259(1-2):543-50. PubMed ID: 9914538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EF-P dependent pauses integrate proximal and distal signals during translation.
    Elgamal S; Katz A; Hersch SJ; Newsom D; White P; Navarre WW; Ibba M
    PLoS Genet; 2014 Aug; 10(8):e1004553. PubMed ID: 25144653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences.
    Chadani Y; Yamanouchi S; Uemura E; Yamasaki K; Niwa T; Ikeda T; Kurihara M; Iwasaki W; Taguchi H
    Nucleic Acids Res; 2024 Jun; 52(10):5825-5840. PubMed ID: 38661232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live
    Mustafi M; Weisshaar JC
    mBio; 2018 Jan; 9(1):. PubMed ID: 29339430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interaction of yeast elongation factor 3 with yeast ribosomes.
    Chakraburtty K
    Int J Biochem Cell Biol; 1999 Jan; 31(1):163-73. PubMed ID: 10216951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T].
    Smailov SK; Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.