These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Disorder Over Pore Size: Boosting Supercapacitor Efficiency. Zhang H; Zhang Y; Wen Z Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202411039. PubMed ID: 39299921 [TBL] [Abstract][Full Text] [Related]
3. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors. Pak AJ; Hwang GS ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557 [TBL] [Abstract][Full Text] [Related]
4. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. Lahrar EH; Simon P; Merlet C J Chem Phys; 2021 Nov; 155(18):184703. PubMed ID: 34773950 [TBL] [Abstract][Full Text] [Related]
5. Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage. Schneidermann C; Jäckel N; Oswald S; Giebeler L; Presser V; Borchardt L ChemSusChem; 2017 Jun; 10(11):2416-2424. PubMed ID: 28436604 [TBL] [Abstract][Full Text] [Related]
6. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. Vatamanu J; Vatamanu M; Bedrov D ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Prasad KP; Dhawale DS; Sivakumar T; Aldeyab SS; Zaidi JS; Ariga K; Vinu A Sci Technol Adv Mater; 2011 Aug; 12(4):044602. PubMed ID: 27877410 [TBL] [Abstract][Full Text] [Related]
8. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. Lian Z; Chao H; Wang ZG ACS Nano; 2021 Jul; 15(7):11724-11733. PubMed ID: 34228448 [TBL] [Abstract][Full Text] [Related]
9. An ultrasound-assisted approach to bio-derived nanoporous carbons: disclosing a linear relationship between effective micropores and capacitance. Bai P; Wei S; Lou X; Xu L RSC Adv; 2019 Oct; 9(54):31447-31459. PubMed ID: 35527936 [TBL] [Abstract][Full Text] [Related]
10. Poly (Ionic Liquid)-Metal Organic Framework-Derived Nanoporous Carbon Membranes: Facile Fabrication and Ultrahigh Areal Capacitance. Shi Y; Long W; Wang Y; He X; Lv B; Zuo H; Li X; Liao Y; Zhang W Macromol Rapid Commun; 2023 Oct; 44(20):e2300309. PubMed ID: 37501566 [TBL] [Abstract][Full Text] [Related]
11. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions. Burt R; Breitsprecher K; Daffos B; Taberna PL; Simon P; Birkett G; Zhao XS; Holm C; Salanne M J Phys Chem Lett; 2016 Oct; 7(19):4015-4021. PubMed ID: 27661760 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Nanoporous Structure of Carbons Derived from the Composite of Cross-Linked Polymers for Charge Storage Applications. Barzegar F; Pavlenko V; Zahid M; Bello A; Xia X; Manyala N; Ozoemena KI; Abbas Q ACS Appl Energy Mater; 2021 Feb; 4(2):1763-1773. PubMed ID: 33644701 [TBL] [Abstract][Full Text] [Related]
13. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. Uralcan B; Uralcan IB ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144 [TBL] [Abstract][Full Text] [Related]
14. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Deschamps M; Gilbert E; Azais P; Raymundo-Piñero E; Ammar MR; Simon P; Massiot D; Béguin F Nat Mater; 2013 Apr; 12(4):351-8. PubMed ID: 23416727 [TBL] [Abstract][Full Text] [Related]
15. On the dynamics of charging in nanoporous carbon-based supercapacitors. Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256 [TBL] [Abstract][Full Text] [Related]
16. Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures. Zhang D; Gao H; Hua G; Zhou H; Wu J; Zhu B; Liu C; Yang J; Chen D Front Chem; 2020; 8():6. PubMed ID: 32133337 [TBL] [Abstract][Full Text] [Related]
17. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Merlet C; Rotenberg B; Madden PA; Taberna PL; Simon P; Gogotsi Y; Salanne M Nat Mater; 2012 Mar; 11(4):306-10. PubMed ID: 22388172 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944 [TBL] [Abstract][Full Text] [Related]
19. Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons. Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE Phys Chem Chem Phys; 2011 Mar; 13(9):3748-57. PubMed ID: 21173972 [TBL] [Abstract][Full Text] [Related]
20. Preparation of capacitor's electrode from sunflower seed shell. Li X; Xing W; Zhuo S; Zhou J; Li F; Qiao SZ; Lu GQ Bioresour Technol; 2011 Jan; 102(2):1118-23. PubMed ID: 20850968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]