These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38635707)

  • 21. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons-Numerical and Experimental Perspective.
    Firlej L; Kuchta B; Walczak K; Journet C
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-Doped Mesoporous Carbon Prepared from a Polybenzoxazine Precursor for High Performance Supercapacitors.
    Thirukumaran P; Atchudan R; Shakila Parveen A; Santhamoorthy M; Ramkumar V; Kim SC
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34206681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings.
    Walsh ED; Han X; Lacey SD; Kim JW; Connell JW; Hu L; Lin Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29478-29485. PubMed ID: 27718542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interconnected V2O5 nanoporous network for high-performance supercapacitors.
    Saravanakumar B; Purushothaman KK; Muralidharan G
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4484-90. PubMed ID: 22913341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen-doped carbons derived from cotton pulp for improved supercapacitors.
    Shen J; Yu J; Luo H; Liu X; Zhou Q; Wei T; Yu X; Wu Y; Yu Y; Li M
    RSC Adv; 2022 Oct; 12(45):29246-29252. PubMed ID: 36320753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.
    Jung S; Myung Y; Kim BN; Kim IG; You IK; Kim T
    Sci Rep; 2018 Jan; 8(1):1915. PubMed ID: 29382861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances of Pore Structure in Disordered Carbons for Sodium Storage: A Mini Review.
    Yue L; Lei Y; Niu Y; Qi Y; Xu M
    Chem Rec; 2022 Oct; 22(10):e202200113. PubMed ID: 35758535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes.
    Chaikittisilp W; Hu M; Wang H; Huang HS; Fujita T; Wu KC; Chen LC; Yamauchi Y; Ariga K
    Chem Commun (Camb); 2012 Jul; 48(58):7259-61. PubMed ID: 22710974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.
    Zhao E; Qin C; Jung HR; Berdichevsky G; Nese A; Marder S; Yushin G
    ACS Nano; 2016 Apr; 10(4):3977-84. PubMed ID: 26950509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.
    Lang X; Hirata A; Fujita T; Chen M
    Nat Nanotechnol; 2011 Apr; 6(4):232-6. PubMed ID: 21336267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance.
    Shrestha RL; Shrestha T; Tamrakar BM; Shrestha RG; Maji S; Ariga K; Shrestha LK
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo
    He D; Gao Y; Yao Y; Wu L; Zhang J; Huang ZH; Wang MX
    Front Chem; 2020; 8():719. PubMed ID: 33173759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles.
    Ma Y; Chen D; Fang Z; Zheng Y; Li W; Xu S; Lu X; Shao G; Liu Q; Yang W
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34011610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors.
    Shrestha LK; Wei Z; Subramaniam G; Shrestha RG; Singh R; Sathish M; Ma R; Hill JP; Nakamura J; Ariga K
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Oukali G; Salager E; Ammar MR; Dutoit CE; Sarou-Kanian V; Simon P; Raymundo-Piñero E; Deschamps M
    ACS Nano; 2019 Nov; 13(11):12810-12815. PubMed ID: 31618018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.