BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38635920)

  • 1. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting.
    Sun J; Ni F; Gu J; Si M; Liu D; Zhang C; Shui X; Xiao P; Chen T
    Adv Mater; 2024 Jul; 36(27):e2314175. PubMed ID: 38635920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting.
    Deng F; Chen Z; Wang C; Xiang C; Poredoš P; Wang R
    Adv Sci (Weinh); 2022 Nov; 9(33):e2204724. PubMed ID: 36209387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems.
    Bai Z; Wang P; Xu J; Wang R; Li T
    Sci Bull (Beijing); 2024 Mar; 69(5):671-687. PubMed ID: 38105159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macro-porous structured aerogel with enhanced ab/desorption kinetics for sorption-based atmospheric water harvesting.
    Deng K; Zhu M; Chen J; Wang Z; Yang H; Xu H; He G; Zhan Y; Gu S; Liu X; Shang B
    J Colloid Interface Sci; 2024 Feb; 656():466-473. PubMed ID: 38007938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous Atmospheric Water Harvesting over a Wide RH Range Enabled by Super Hygroscopic Composite Aerogels.
    Zhang X; Qu H; Li X; Zhang L; Zhang Y; Yang J; Zhou M; Suresh L; Liu S; Tan SC
    Adv Mater; 2024 Jan; ():e2310219. PubMed ID: 38219071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Day Multicyclic Atmospheric Water Harvesting Enabled by Polyelectrolyte Hydrogel with Hybrid Desorption Mode.
    Shan H; Poredoš P; Ye Z; Qu H; Zhang Y; Zhou M; Wang R; Tan SC
    Adv Mater; 2023 Sep; 35(35):e2302038. PubMed ID: 37199373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viability of a practical multicyclic sorption-based water harvester with improved water yield.
    Wang W; Pan Q; Xing Z; Liu X; Dai Y; Wang R; Ge T
    Water Res; 2022 Mar; 211():118029. PubMed ID: 35030362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly confined hydration in thermoresponsive hydrogels for efficient atmospheric water harvesting.
    Guan W; Zhao Y; Lei C; Yu G
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2308969120. PubMed ID: 37695918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous, Highly Hygroscopic, and Leakage-Free Composites for Efficient Atmospheric Water Harvesting.
    Huang Z; Zhang T; Ju A; Xu Z; Zhao Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16893-16902. PubMed ID: 38525842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hygroscopic-Microgels-Enabled Rapid Water Extraction from Arid Air.
    Guan W; Lei C; Guo Y; Shi W; Yu G
    Adv Mater; 2024 Mar; 36(12):e2207786. PubMed ID: 36239247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of Sorption in Hygroscopic Hydrogels.
    Díaz-Marín CD; Zhang L; Lu Z; Alshrah M; Grossman JC; Wang EN
    Nano Lett; 2022 Feb; 22(3):1100-1107. PubMed ID: 35061401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications.
    Entezari A; Esan OC; Yan X; Wang R; An L
    Adv Mater; 2023 Oct; 35(40):e2210957. PubMed ID: 36869587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling-Induced Salt Loading.
    Graeber G; Díaz-Marín CD; Gaugler LC; Zhong Y; El Fil B; Liu X; Wang EN
    Adv Mater; 2024 Mar; 36(12):e2211783. PubMed ID: 37201199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates.
    Lu H; Shi W; Zhang JH; Chen AC; Guan W; Lei C; Greer JR; Boriskina SV; Yu G
    Adv Mater; 2022 Sep; 34(37):e2205344. PubMed ID: 35901232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
    Li T; Wu M; Xu J; Du R; Yan T; Wang P; Bai Z; Wang R; Wang S
    Nat Commun; 2022 Nov; 13(1):6771. PubMed ID: 36351950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Super-Hygroscopic Solar-Regenerated Alginate-Based Composite for Atmospheric Water Harvesting.
    Abd Elwadood SN; Farinha ASF; Al Wahedi Y; Al Alili A; Witkamp GJ; Dumée LF; Karanikolos GN
    Small; 2024 May; ():e2400420. PubMed ID: 38751057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Atmospheric Water Harvesting with Sunlight-Activated Sorption Ratcheting.
    Park H; Haechler I; Schnoering G; Ponte MD; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2237-2245. PubMed ID: 34974699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting.
    Lei C; Guo Y; Guan W; Lu H; Shi W; Yu G
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202200271. PubMed ID: 35089612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe-Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting.
    Wu H; Xiong Y; Yu D; Yang P; Shi H; Huang L; Wu Y; Xi M; Xiao P; Yang L
    Nanoscale; 2022 Dec; 14(48):18022-18032. PubMed ID: 36444669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.