These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38635920)

  • 21. A Semi-Interpenetrating Network Sorbent of Superior Efficiency for Atmospheric Water Harvesting and Solar-Regenerated Release.
    Elwadood SNA; Farinha ASF; Al Wahedi Y; Al Alili A; Witkamp GJ; Dumée LF; Karanikolos GN
    ACS Appl Mater Interfaces; 2024 May; 16(20):26142-26152. PubMed ID: 38718256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macroporous Hydrogel for High-Performance Atmospheric Water Harvesting.
    Lyu T; Wang Z; Liu R; Chen K; Liu H; Tian Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32433-32443. PubMed ID: 35803257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An encapsulation protocol of salt-based composite sorbents for atmospheric water harvesting.
    Shan H; Pan Q; Li C; Wang R
    STAR Protoc; 2022 Jun; 3(2):101255. PubMed ID: 35313710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting.
    Li J; Xing G; Qiao M; Liu Z; Sun H; Jiao R; Li L; Zhang J; Li A
    Langmuir; 2023 Dec; 39(49):18161-18170. PubMed ID: 38015071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic Water Transport in Moisture-Capturing Hydrogels.
    Graeber G; Díaz-Marín CD; Gaugler LC; El Fil B
    Nano Lett; 2024 Apr; 24(13):3858-3865. PubMed ID: 38437505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting.
    Wu M; Li R; Shi Y; Altunkaya M; Aleid S; Zhang C; Wang W; Wang P
    Mater Horiz; 2021 May; 8(5):1518-1527. PubMed ID: 34846460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing Salt Leakage Mitigation and Comparing Sorption-Desorption Characteristics of Polyacrylamide-Based Hydrogels.
    Liu Y; Liu Z; Qie Z; Wang Z; Sun W
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustainable Hierarchical-Pored PAAS-PNIPAAm Hydrogel with Core-Shell Structure Tailored for Highly Efficient Atmospheric Water Harvesting.
    Zhang Z; Wang Y; Li Z; Fu H; Huang J; Xu Z; Lai Y; Qian X; Zhang S
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55295-55306. PubMed ID: 36454694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti
    Wu Q; Su W; Li Q; Tao Y; Li H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38906-38915. PubMed ID: 34351132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a Compact Multicyclic High-Performance Atmospheric Water Harvester for Arid Environments.
    Li X; El Fil B; Li B; Graeber G; Li AC; Zhong Y; Alshrah M; Wilson CT; Lin E
    ACS Energy Lett; 2024 Jul; 9(7):3391-3399. PubMed ID: 39022669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Polyzwitterionic@MOF Hydrogel with Exceptionally High Water Vapor Uptake for Efficient Atmospheric Water Harvesting.
    Yan J; Li W; Yu Y; Huang G; Peng J; Lv D; Chen X; Wang X; Liu Z
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.
    Xu J; Li T; Chao J; Wu S; Yan T; Li W; Cao B; Wang R
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5202-5210. PubMed ID: 31943677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in Solar-Driven Hygroscopic Water Harvesting.
    Zhuang S; Qi H; Wang X; Li X; Liu K; Liu J; Zhang H
    Glob Chall; 2021 Jan; 5(1):2000085. PubMed ID: 33437528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bimetallic MOF-Derived Solar-Triggered Monolithic Adsorbent for Enhanced Atmospheric Water Harvesting.
    Luo F; Liang X; Chen W; Wang S; Gao X; Zhang Z; Fang Y
    Small; 2023 Nov; 19(48):e2304477. PubMed ID: 37507817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hygroscopic and Photothermal All-Polymer Foams for Efficient Atmospheric Water Harvesting, Passive Humidity Management, and Protective Packaging.
    Lin Y; Shao K; Li S; Li N; Wang S; Wu X; Guo C; Yu L; Murto P; Xu X
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A humidity/thermal dual response 3D-fabric with porous poly(N-isopropyl acrylamide) hydrogel towards efficient atmospheric water harvesting.
    Zhang Z; Wang X; Li H; Liu G; Zhao K; Wang Y; Li Z; Huang J; Xu Z; Lai Y; Qian X; Zhang S
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1040-1051. PubMed ID: 37783004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments.
    Guo Y; Guan W; Lei C; Lu H; Shi W; Yu G
    Nat Commun; 2022 May; 13(1):2761. PubMed ID: 35589809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Engineering of Sorption-Based Atmospheric Water Harvesters.
    Song Y; Zeng M; Wang X; Shi P; Fei M; Zhu J
    Adv Mater; 2024 Mar; 36(12):e2209134. PubMed ID: 37246306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research Progress on Hygroscopic Agents for Atmospheric Water Harvesting Systems.
    Bai Q; Zhou W; Cui W; Qi Z
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.