These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38636451)

  • 1. 14-3-3θ, a novel player in TDP-43 pathophysiology: Implications for ALS/FTD.
    Khalil B; Da Cruz S
    Neuron; 2024 Apr; 112(8):1197-1199. PubMed ID: 38636451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice.
    Ke YD; van Hummel A; Au C; Chan G; Lee WS; van der Hoven J; Przybyla M; Deng Y; Sabale M; Morey N; Bertz J; Feiten A; Ippati S; Stevens CH; Yang S; Gladbach A; Haass NK; Kril JJ; Blair IP; Delerue F; Ittner LM
    Neuron; 2024 Apr; 112(8):1249-1264.e8. PubMed ID: 38366598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies.
    Alfieri JA; Pino NS; Igaz LM
    J Neurosci; 2014 Nov; 34(46):15244-59. PubMed ID: 25392493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice.
    McCann EP; Fifita JA; Grima N; Galper J; Mehta P; Freckleton SE; Zhang KY; Henden L; Hogan AL; Chan Moi Fat S; Wu SS; Jagaraj CJ; Berning BA; Williams KL; Twine NA; Bauer D; Piguet O; Hodges J; Kwok JBJ; Halliday GM; Kiernan MC; Atkin J; Rowe DB; Nicholson GA; Walker AK; Blair IP; Yang S
    J Neurol Neurosurg Psychiatry; 2020 Feb; 91(2):162-171. PubMed ID: 31690696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of autophagy mitigates TDP-43 pathology and translational repression of neurofilament mRNAs in mouse models of ALS/FTD.
    Kumar S; Phaneuf D; Cordeau P; Boutej H; Kriz J; Julien JP
    Mol Neurodegener; 2021 Jan; 16(1):1. PubMed ID: 33413517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43.
    Godoy-Corchuelo JM; Ali Z; Brito Armas JM; Martins-Bach AB; García-Toledo I; Fernández-Beltrán LC; López-Carbonero JI; Bascuñana P; Spring S; Jimenez-Coca I; Muñoz de Bustillo Alfaro RA; Sánchez-Barrena MJ; Nair RR; Nieman BJ; Lerch JP; Miller KL; Ozdinler HP; Fisher EMC; Cunningham TJ; Acevedo-Arozena A; Corrochano S
    Neurobiol Dis; 2024 Apr; 193():106437. PubMed ID: 38367882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits.
    Godfrey RK; Alsop E; Bjork RT; Chauhan BS; Ruvalcaba HC; Antone J; Gittings LM; Michael AF; Williams C; Hala'ufia G; Blythe AD; Hall M; Sattler R; Van Keuren-Jensen K; Zarnescu DC
    Acta Neuropathol Commun; 2023 Oct; 11(1):168. PubMed ID: 37864255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis?
    Vanden Broeck L; Callaerts P; Dermaut B
    Trends Mol Med; 2014 Feb; 20(2):66-71. PubMed ID: 24355761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies.
    Miguel L; Frébourg T; Campion D; Lecourtois M
    Neurobiol Dis; 2011 Feb; 41(2):398-406. PubMed ID: 20951205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stathmin-2: adding another piece to the puzzle of TDP-43 proteinopathies and neurodegeneration.
    Glass JD
    J Clin Invest; 2020 Nov; 130(11):5677-5680. PubMed ID: 33074248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72.
    Murray ME; DeJesus-Hernandez M; Rutherford NJ; Baker M; Duara R; Graff-Radford NR; Wszolek ZK; Ferman TJ; Josephs KA; Boylan KB; Rademakers R; Dickson DW
    Acta Neuropathol; 2011 Dec; 122(6):673-90. PubMed ID: 22083254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS.
    Ke YD; van Hummel A; Stevens CH; Gladbach A; Ippati S; Bi M; Lee WS; Krüger S; van der Hoven J; Volkerling A; Bongers A; Halliday G; Haass NK; Kiernan M; Delerue F; Ittner LM
    Acta Neuropathol; 2015 Nov; 130(5):661-78. PubMed ID: 26437864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of C-terminal fragments of transactive response DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic mice.
    Medina DX; Orr ME; Oddo S
    Neurobiol Aging; 2014 Jan; 35(1):79-87. PubMed ID: 23954172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.
    Ratti A; Buratti E
    J Neurochem; 2016 Aug; 138 Suppl 1():95-111. PubMed ID: 27015757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations.
    Zhang Z; Almeida S; Lu Y; Nishimura AL; Peng L; Sun D; Wu B; Karydas AM; Tartaglia MC; Fong JC; Miller BL; Farese RV; Moore MJ; Shaw CE; Gao FB
    PLoS One; 2013; 8(10):e76055. PubMed ID: 24143176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats.
    Huang C; Tong J; Bi F; Zhou H; Xia XG
    J Clin Invest; 2012 Jan; 122(1):107-18. PubMed ID: 22156203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia.
    Sidibé H; Khalfallah Y; Xiao S; Gómez NB; Fakim H; Tank EMH; Di Tomasso G; Bareke E; Aulas A; McKeever PM; Melamed Z; Destroimaisons L; Deshaies JE; Zinman L; Parker JA; Legault P; Tétreault M; Barmada SJ; Robertson J; Vande Velde C
    Brain; 2021 Dec; 144(11):3461-3476. PubMed ID: 34115105
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Cook CN; Wu Y; Odeh HM; Gendron TF; Jansen-West K; Del Rosso G; Yue M; Jiang P; Gomes E; Tong J; Daughrity LM; Avendano NM; Castanedes-Casey M; Shao W; Oskarsson B; Tomassy GS; McCampbell A; Rigo F; Dickson DW; Shorter J; Zhang YJ; Petrucelli L
    Sci Transl Med; 2020 Sep; 12(559):. PubMed ID: 32878979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum.
    Karch CM; Wen N; Fan CC; Yokoyama JS; Kouri N; Ross OA; Höglinger G; Müller U; Ferrari R; Hardy J; Schellenberg GD; Sleiman PM; Momeni P; Hess CP; Miller BL; Sharma M; Van Deerlin V; Smeland OB; Andreassen OA; Dale AM; Desikan RS;
    JAMA Neurol; 2018 Jul; 75(7):860-875. PubMed ID: 29630712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.