These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38636472)

  • 1. Frequency dependence of nanorod self-alignment using microfluidic methods.
    Shin H; Hong L; Park W; Shin J; Park JB
    Nanotechnology; 2024 May; 35(30):. PubMed ID: 38636472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Assembly of Large-Area Silica Nanorod Film Using the Electric-Field-Assisted Capillary Channel Method.
    Wei C; Li C; Dou Z; Fu M; Liu X; He D; Wang Y
    Langmuir; 2023 Aug; 39(33):11819-11827. PubMed ID: 37556849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced DC-Operated Electroluminescence of Forwardly Aligned   p/MQW/n InGaN Nanorod LEDs via DC Offset-AC Dielectrophoresis.
    Eo YJ; Yoo GY; Kang H; Lee YK; Kim CS; Oh JH; Lee KN; Kim W; Do YR
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37912-37920. PubMed ID: 29019239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-particle interaction in AC electric field driven by dielectrophoresis force.
    Huang Z; Wu Z; Wang P; Zhou T; Shi L; Liu Z; Huang J
    Electrophoresis; 2021 Nov; 42(21-22):2189-2196. PubMed ID: 34117650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency.
    An R; Massa K; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH
    Electrophoresis; 2021 Dec; 42(23):2445-2464. PubMed ID: 34081787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Motion Driven by Liquid Dielectrophoresis in the Low-Frequency Range.
    Günther-Müller S; Azizy R; Strehle S
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells-A review.
    Yao J; Zhu G; Zhao T; Takei M
    Electrophoresis; 2018 Oct; ():. PubMed ID: 30378130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-aligned microfluidic contactless dielectrophoresis device fabricated by single-layer imprinting on cyclic olefin copolymer.
    Salahi A; Varhue WB; Farmehini V; Hyler AR; Schmelz EM; Davalos RV; Swami NS
    Anal Bioanal Chem; 2020 Jun; 412(16):3881-3889. PubMed ID: 32372273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of gold nanorod alignment after electric field-assisted deposition.
    Ahmed W; Kooij ES; van Silfhout A; Poelsema B
    Nano Lett; 2009 Nov; 9(11):3786-94. PubMed ID: 19719154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
    Fernández-Mateo R; Calero V; Morgan H; Ramos A; García-Sánchez P
    Anal Chem; 2021 Nov; 93(44):14667-14674. PubMed ID: 34704741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
    Hawkins BG; Kirby BJ
    Electrophoresis; 2010 Nov; 31(22):3622-33. PubMed ID: 21077234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis.
    Hewlin RL; Edwards M
    Curr Issues Mol Biol; 2023 Apr; 45(4):3048-3067. PubMed ID: 37185724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear electrohydrodynamics in microfluidic devices.
    Zeng J
    Int J Mol Sci; 2011; 12(3):1633-49. PubMed ID: 21673912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices.
    Rashed MZ; Green NG; Williams SJ
    Electrophoresis; 2020 Jan; 41(1-2):148-155. PubMed ID: 31677287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis.
    Chai Z; Yilmaz C; Busnaina AA; Lissandrello CA; Carter DJD
    Nanotechnology; 2017 Nov; 28(47):475303. PubMed ID: 29027906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.