These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38636500)

  • 1. Recent trends in bone tissue engineering: a review of materials, methods, and structures.
    Moghaddam A; Bahrami M; Mirzadeh M; Khatami M; Simorgh S; Chimehrad M; Kruppke B; Bagher Z; Mehrabani D; Khonakdar HA
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38636500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
    Gao C; Deng Y; Feng P; Mao Z; Li P; Yang B; Deng J; Cao Y; Shuai C; Peng S
    Int J Mol Sci; 2014 Mar; 15(3):4714-32. PubMed ID: 24646912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondral tissue engineering: scaffolds, stem cells and applications.
    Nooeaid P; Salih V; Beier JP; Boccaccini AR
    J Cell Mol Med; 2012 Oct; 16(10):2247-70. PubMed ID: 22452848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production.
    Marques A; Miranda G; Silva F; Pinto P; Carvalho Ó
    J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):377-393. PubMed ID: 32924277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine.
    Qi J; Yu T; Hu B; Wu H; Ouyang H
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering.
    Long T; Yang J; Shi SS; Guo YP; Ke QF; Zhu ZA
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1455-64. PubMed ID: 25430707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
    Rizwan M; Hamdi M; Basirun WJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review.
    Chen X; Wu T; Bu Y; Yan H; Lin Q
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile three-dimensional foam fabrication strategy for soft and hard tissue engineering.
    Xu C; Bai Y; Yang S; Yang H; Stout DA; Tran PA; Yang L
    Biomed Mater; 2018 Feb; 13(2):025018. PubMed ID: 29420309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Collagen-Based Materials in Bone Tissue Engineering.
    Fan L; Ren Y; Emmert S; Vučković I; Stojanovic S; Najman S; Schnettler R; Barbeck M; Schenke-Layland K; Xiong X
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial Properties Modulating Bone Regeneration.
    Zhu Y; Goh C; Shrestha A
    Macromol Biosci; 2021 Apr; 21(4):e2000365. PubMed ID: 33615702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering.
    Ochoa I; Sanz-Herrera JA; García-Aznar JM; Doblaré M; Yunos DM; Boccaccini AR
    J Biomech; 2009 Feb; 42(3):257-60. PubMed ID: 19105999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.