BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38636566)

  • 1. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord.
    Wang X; Cheng Z; Tai W; Shi M; Ayazi M; Liu Y; Sun L; Yu C; Fan Z; Guo B; He X; Sun D; Young W; Ren Y
    Brain Behav Immun; 2024 Apr; 119():431-453. PubMed ID: 38636566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media.
    Guo L; Rolfe AJ; Wang X; Tai W; Cheng Z; Cao K; Chen X; Xu Y; Sun D; Li J; He X; Young W; Fan J; Ren Y
    Mol Brain; 2016 May; 9(1):48. PubMed ID: 27153974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris.
    Wang X; Cao K; Sun X; Chen Y; Duan Z; Sun L; Guo L; Bai P; Sun D; Fan J; He X; Young W; Ren Y
    Glia; 2015 Apr; 63(4):635-51. PubMed ID: 25452166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-4F, an apolipoprotein A-I mimetic, promotes the clearance of myelin debris and the reduction of foamy macrophages after spinal cord injury.
    Li J; Zhu Z; Li Y; Chen Y; Hu X; Liu Y; Shi Y; Hu Y; Bi Y; Xu X; Zheng M; Cheng L; Jing J
    Bioengineered; 2022 May; 13(5):11794-11809. PubMed ID: 35546071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury.
    Ryan CB; Choi JS; Al-Ali H; Lee JK
    Neurobiol Dis; 2022 Feb; 163():105608. PubMed ID: 34979258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site.
    Ryan CB; Choi JS; Kang B; Herr S; Pereira C; Moraes CT; Al-Ali H; Lee JK
    Neurobiol Dis; 2024 Jan; 190():106370. PubMed ID: 38049013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris.
    Sheng X; Zhao J; Li M; Xu Y; Zhou Y; Xu J; He R; Lu H; Wu T; Duan C; Cao Y; Hu J
    Front Cell Dev Biol; 2021; 9():772205. PubMed ID: 34820385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury.
    Quan X; Yu C; Fan Z; Wu T; Qi C; Zhang H; Wu S; Wang X
    Exp Neurol; 2023 May; 363():114367. PubMed ID: 36858281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury.
    Zhou Q; Xiang H; Li A; Lin W; Huang Z; Guo J; Wang P; Chi Y; Xiang K; Xu Y; Zhou L; So KF; Chen X; Sun X; Ren Y
    J Neurotrauma; 2019 Mar; 36(6):903-918. PubMed ID: 30221582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury.
    Kong FQ; Zhao SJ; Sun P; Liu H; Jie J; Xu T; Xu AD; Yang YQ; Zhu Y; Chen J; Zhou Z; Qian DF; Gu CJ; Chen Q; Yin GY; Zhang HW; Fan J
    J Neuroinflammation; 2020 Feb; 17(1):62. PubMed ID: 32066456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local delivery of AdipoRon from self-assembled microparticles to inhibit myelin lipid uptake and to promote lipid efflux from rat macrophages.
    Shultz RB; Hai N; Zhong Y
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38359460
    [No Abstract]   [Full Text] [Related]  

  • 12. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury.
    Zhu Y; Lyapichev K; Lee DH; Motti D; Ferraro NM; Zhang Y; Yahn S; Soderblom C; Zha J; Bethea JR; Spiller KL; Lemmon VP; Lee JK
    J Neurosci; 2017 Mar; 37(9):2362-2376. PubMed ID: 28130359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model.
    Imai M; Watanabe M; Suyama K; Osada T; Sakai D; Kawada H; Matsumae M; Mochida J
    J Neurosurg Spine; 2008 Jan; 8(1):58-66. PubMed ID: 18173348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury.
    Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G
    J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of foam cells in spinal cord injury: challenges and opportunities for intervention.
    Wang XX; Li ZH; Du HY; Liu WB; Zhang CJ; Xu X; Ke H; Peng R; Yang DG; Li JJ; Gao F
    Front Immunol; 2024; 15():1368203. PubMed ID: 38545108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice.
    Shechter R; London A; Varol C; Raposo C; Cusimano M; Yovel G; Rolls A; Mack M; Pluchino S; Martino G; Jung S; Schwartz M
    PLoS Med; 2009 Jul; 6(7):e1000113. PubMed ID: 19636355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The immunomodulator decoy receptor 3 improves locomotor functional recovery after spinal cord injury.
    Chiu CW; Huang WH; Lin SJ; Tsai MJ; Ma H; Hsieh SL; Cheng H
    J Neuroinflammation; 2016 Jun; 13(1):154. PubMed ID: 27316538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.
    Francos-Quijorna I; Santos-Nogueira E; Gronert K; Sullivan AB; Kopp MA; Brommer B; David S; Schwab JM; López-Vales R
    J Neurosci; 2017 Nov; 37(48):11731-11743. PubMed ID: 29109234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meningeal Foam Cells and Ependymal Cells in Axolotl Spinal Cord Regeneration.
    Enos N; Takenaka H; Scott S; Salfity HVN; Kirk M; Egar MW; Sarria DA; Slayback-Barry D; Belecky-Adams T; Chernoff EAG
    Front Immunol; 2019; 10():2558. PubMed ID: 31736973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.