These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38636754)

  • 1. Effects of catechol grafting on chitosan-based coacervation and adhesion.
    Gu R; Guo J; Zhang S; Zhou J; Wang J; Cohen Stuart MA; Wang M
    Int J Biol Macromol; 2024 May; 267(Pt 2):131662. PubMed ID: 38636754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism.
    Huang GQ; Liu LN; Han XN; Xiao JX
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():423-429. PubMed ID: 28629036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review.
    Ryu JH; Hong S; Lee H
    Acta Biomater; 2015 Nov; 27():101-115. PubMed ID: 26318801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balanced adhesion and cohesion of chitosan matrices by conjugation and oxidation of catechol for high-performance surgical adhesives.
    Park MK; Li MX; Yeo I; Jung J; Yoon BI; Joung YK
    Carbohydr Polym; 2020 Nov; 248():116760. PubMed ID: 32919558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion and Cohesion Differences between Catechol- and Pyrogallol-Functionalized Chitosan.
    Lee S; Hwang DS
    Macromol Rapid Commun; 2023 Mar; 44(6):e2200845. PubMed ID: 36457197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gum arabic-chitosan complex coacervation.
    Espinosa-Andrews H; Báez-González JG; Cruz-Sosa F; Vernon-Carter EJ
    Biomacromolecules; 2007 Apr; 8(4):1313-8. PubMed ID: 17375951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates.
    Xiao JX; Zhu CP; Cheng LY; Yang J; Huang GQ
    Int J Biol Macromol; 2018 Oct; 117():315-322. PubMed ID: 29807084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification.
    Li Y; Zhang X; Sun N; Wang Y; Lin S
    Int J Biol Macromol; 2018 Dec; 120(Pt A):783-788. PubMed ID: 30171945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration.
    Schröder P; Cord-Landwehr S; Schönhoff M; Cramer C
    Biomacromolecules; 2023 Mar; 24(3):1194-1208. PubMed ID: 36779888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy.
    Guyot C; Adoungotchodo A; Taillades W; Cerruti M; Lerouge S
    J Mater Chem B; 2021 Oct; 9(40):8406-8416. PubMed ID: 34676861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates.
    Galland P; Iqbal MH; Favier D; Legros M; Schaaf P; Boulmedais F; Vahdati M
    J Colloid Interface Sci; 2024 May; 661():196-206. PubMed ID: 38301458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mussel inspired bio-adhesive with multi-interactions for tissue repair.
    Shi C; Chen X; Zhang Z; Chen Q; Shi D; Kaneko D
    J Biomater Sci Polym Ed; 2020 Mar; 31(4):491-503. PubMed ID: 31815604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties.
    Sakloetsakun D; Preechagoon D; Bernkop-Schnürch A; Pongjanyakul T
    Pharm Dev Technol; 2016 Aug; 21(5):590-9. PubMed ID: 25886079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan.
    Zeng Z; Mo X
    J Biomater Appl; 2017 Nov; 32(5):612-621. PubMed ID: 29113567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Bio-Inspired Wet Adhesives through Tunable Molecular Interactions.
    Chen J; Zeng H
    J Colloid Interface Sci; 2023 Sep; 645():591-606. PubMed ID: 37167909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mussel Foot Protein-Inspired Adhesive Tapes with Tunable Underwater Adhesion.
    Ni P; Chen Y; Wan K; Cheng Y; Fang Y; Weng Y; Liu H
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45550-45562. PubMed ID: 39145483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.
    Gulão Eda S; de Souza CJ; Andrade CT; Garcia-Rojas EE
    Food Chem; 2016 Mar; 194():680-6. PubMed ID: 26471607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.