These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38636762)

  • 1. Redox-active NiS@bacterial cellulose nanofiber composite separators with superior rate capability for lithium-ion batteries.
    Zhang Y; Du W; Ye D; Zhou J; Xu W; Xu J
    Int J Biol Macromol; 2024 May; 268(Pt 1):131622. PubMed ID: 38636762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries.
    Yang Y; Huang C; Gao G; Hu C; Luo L; Xu J
    Carbohydr Polym; 2020 Nov; 247():116702. PubMed ID: 32829830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of greenly biodegradable bacterial cellulose/UiO-66-NH
    Jia S; Chen Z; Li Y; Li C; Duan C; Lim KH; Kawi S
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131988. PubMed ID: 38701999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-Active Separators for Lithium-Ion Batteries.
    Wang Z; Pan R; Ruan C; Edström K; Strømme M; Nyholm L
    Adv Sci (Weinh); 2018 Mar; 5(3):1700663. PubMed ID: 29593967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose microspheres enhanced polyvinyl alcohol separator for high-performance lithium-ion batteries.
    Xia Y; Li X; Zhuang J; Yuan Y; Wang W
    Carbohydr Polym; 2023 Jan; 300():120231. PubMed ID: 36372502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries.
    Huang C; Ji H; Yang Y; Guo B; Luo L; Meng Z; Fan L; Xu J
    Carbohydr Polym; 2020 Feb; 230():115570. PubMed ID: 31887969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils.
    Lv D; Chai J; Wang P; Zhu L; Liu C; Nie S; Li B; Cui G
    Carbohydr Polym; 2021 Jan; 251():116975. PubMed ID: 33142552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of regenerated cellulose-based separators for high-performance lithium-ion batteries by regulating degrees of polymerization.
    Hu Z; Liu Q; Zhang Q; Zhang J; Chen L; Xu S
    Int J Biol Macromol; 2024 May; 268(Pt 2):131854. PubMed ID: 38677683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.
    Zhang J; Liu Z; Kong Q; Zhang C; Pang S; Yue L; Wang X; Yao J; Cui G
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):128-34. PubMed ID: 23227828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halloysite nanotubes enhanced polyimide/oxidized-lignin nanofiber separators for long-cycling lithium metal batteries.
    Song C; Luo J; Gao C; Peng Q; Gibril ME; Fatehi P; Liu Z; Wang S; Kong F
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132640. PubMed ID: 38825280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacterial cellulose-based separator with tunable pore size for lithium-ion batteries.
    Cheng C; Yang R; Wang Y; Fu D; Sheng J; Guo X
    Carbohydr Polym; 2023 Mar; 304():120489. PubMed ID: 36641193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.
    Chen W; Shi L; Wang Z; Zhu J; Yang H; Mao X; Chi M; Sun L; Yuan S
    Carbohydr Polym; 2016 Aug; 147():517-524. PubMed ID: 27178959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrite-free lithium metal battery enabled by mesoporous silica host layer mediated cellulose/PVDF Janus separator.
    Qi X; Huang Z; Zhang Z; Wei J; Yang Z
    J Colloid Interface Sci; 2024 Jun; 663():716-724. PubMed ID: 38432170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries.
    Song Y; Zhao G; Zhang S; Xie C; Yang R; Li X
    Carbohydr Polym; 2024 Apr; 329():121530. PubMed ID: 38286525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches.
    Li A; Yuen ACY; Wang W; De Cachinho Cordeiro IM; Wang C; Chen TBY; Zhang J; Chan QN; Yeoh GH
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries.
    Bharti VK; Pathak AD; Sharma CS; Khandelwal M
    Carbohydr Polym; 2022 Oct; 293():119731. PubMed ID: 35798427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopolymer separators from polydopamine-functionalized bacterial cellulose for lithium-sulfur batteries.
    Baranwal R; Lin X; Li W; Pan X; Wang S; Fan Z
    J Colloid Interface Sci; 2024 Feb; 656():556-565. PubMed ID: 38011774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries.
    Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Separator Enabled by Covalent Organic Frameworks for High-Performance Li Metal Batteries.
    Wang C; Li W; Jin Y; Liu J; Wang H; Zhang Q
    Small; 2023 Jul; 19(28):e2300023. PubMed ID: 37191227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.