BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38636914)

  • 21. Effect of Seed Sludge Type on Aerobic Granulation, Pollutant Removal and Microbial Community in a Sequencing Batch Reactor Treating Real Textile Wastewater.
    Zou J; Yang J; He H; Wang X; Mei R; Cai L; Li J
    Int J Environ Res Public Health; 2022 Sep; 19(17):. PubMed ID: 36078654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye.
    Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R
    Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of SBR parameters on the sludge toxicity of synthetic wastewater containing bisphenol A.
    Chen X; Zhao J; Zhao J; Yang N; Zhang F; Jiang Z
    Environ Sci Pollut Res Int; 2014; 21(15):9287-96. PubMed ID: 24728543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cosmetic wastewater treatment with combined light/Fe
    Muszyński A; Marcinowski P; Maksymiec J; Beskowska K; Kalwarczyk E; Bogacki J
    J Hazard Mater; 2019 Oct; 378():120732. PubMed ID: 31200226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.
    Gani KM; Rajpal A; Kazmi AA
    Environ Sci Process Impacts; 2016 Mar; 18(3):406-16. PubMed ID: 26923228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment.
    Li RH; Wang XM; Li XY
    Water Res; 2018 Feb; 129():402-412. PubMed ID: 29175759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous removal of Sb(III) and Sb(V) from mining wastewater by reduced graphene oxide/bimetallic nanoparticles.
    Chen W; Lin Z; Chen Z; Weng X; Owens G; Chen Z
    Sci Total Environ; 2022 Aug; 836():155704. PubMed ID: 35523350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant.
    Singh V; Srivastava VC
    Environ Pollut; 2020 Apr; 259():113822. PubMed ID: 31887588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of nutrient deficiency on removal of organic solvents from textile manufacturing wastewater during activated sludge treatment.
    Freedman DL; Payauys AM; Karanfil T
    Environ Technol; 2005 Feb; 26(2):179-88. PubMed ID: 15791799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of an aniline supplement on the stability of aerobic granular sludge.
    Dai Y; Jiang Y; Su H
    J Environ Manage; 2015 Oct; 162():115-22. PubMed ID: 26233584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of Mn
    Deng S; An Q; Song J; Yang Y; Huang Z; Feng S; Tang C; Zhao B
    Chemosphere; 2024 Jul; 359():142271. PubMed ID: 38734248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency.
    Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z
    Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism for the simultaneous removal of Sb(III) and Sb(V) from mining wastewater by phytosynthesized iron nanoparticles.
    Li H; Gong K; Jin X; Owens G; Chen Z
    Chemosphere; 2022 Nov; 307(Pt 1):135778. PubMed ID: 35863409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of aerobic granular sludge in different bioreactors.
    Zhao X; Chen Z; Shen J; Wang X
    Environ Technol; 2014; 35(5-8):938-44. PubMed ID: 24645477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of a sludge-minimizing lab-scale BNR reactor when the operation is changed to real primary effluent from synthetic wastewater.
    Huang P; Goel R
    Water Res; 2015 Sep; 81():301-10. PubMed ID: 26086148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms.
    Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T
    J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced removal of antimony in dyeing wastewater by mixing Fe
    Liu H; Ying Q; Li C; Norra S; Lichtfouse E
    Water Environ Res; 2020 Aug; 92(8):1208-1213. PubMed ID: 32092222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of disperse dyes from textile wastewater using bio-sludge.
    Sirianuntapiboon S; Srisornsak P
    Bioresour Technol; 2007 Mar; 98(5):1057-66. PubMed ID: 16797981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment.
    Gutierrez O; Park D; Sharma KR; Yuan Z
    Water Res; 2010 Jun; 44(11):3467-75. PubMed ID: 20434190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism.
    Li X; Dou X; Li J
    J Environ Sci (China); 2012; 24(7):1197-203. PubMed ID: 23513439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.