BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38636917)

  • 1. Unveiling microbial degradation of triclosan: Degradation mechanism, pathways, and catalyzing clean energy.
    Nandikes G; Pathak P; Singh L
    Chemosphere; 2024 Jun; 357():142053. PubMed ID: 38636917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells.
    Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F
    J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting the degradation mechanism of triclosan in microbial fuel cell by combining analysis microbiome community and degradation pathway.
    Liu Q; Zhu J; Wang L; Wang X; Huang Z; Zhao F; Zou J; Liu Y; Ma J
    Chemosphere; 2023 Apr; 321():137983. PubMed ID: 36739987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of triclosan through enhanced microbial biodegradation.
    Balakrishnan P; Mohan S
    J Hazard Mater; 2021 Oct; 420():126430. PubMed ID: 34252677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.
    Ishii S; Suzuki S; Norden-Krichmar TM; Wu A; Yamanaka Y; Nealson KH; Bretschger O
    Water Res; 2013 Dec; 47(19):7120-30. PubMed ID: 24183402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants.
    Zhao C; Xie H; Xu J; Xu X; Zhang J; Hu Z; Liu C; Liang S; Wang Q; Wang J
    Sci Total Environ; 2015 Feb; 505():633-9. PubMed ID: 25461066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation.
    Miran W; Nawaz M; Kadam A; Shin S; Heo J; Jang J; Lee DS
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13477-85. PubMed ID: 25940481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community.
    Zhang Q; Zhang Y; Li D
    Bioresour Technol; 2017 Apr; 229():104-110. PubMed ID: 28110226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous enhancement of power generation and chlorophenol degradation in nonmodified microbial fuel cells using an electroactive biofilm carbon felt anode.
    Lu N; Li L; Wang C; Wang Z; Wang Y; Yan Y; Qu J; Guan J
    Sci Total Environ; 2021 Aug; 783():147045. PubMed ID: 34088112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation from food wastes and microbial community structure in microbial fuel cells.
    Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D
    Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of fipronil degradation with eliminating its toxicity in a microbial fuel cell and the catabolic versatility of anodic biofilm.
    Zhang Q; Zhang L; Li Z; Zhang L; Li D
    Bioresour Technol; 2019 Oct; 290():121723. PubMed ID: 31302463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.
    Cheng K; Hu J; Hou H; Liu B; Chen Q; Pan K; Pu W; Yang J; Wu X; Yang C
    Bioresour Technol; 2017 Apr; 229():126-133. PubMed ID: 28110229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of polyethylene microplastics in river biofilms and effect on the uptake, biotransformation and toxicity of the antimicrobial triclosan.
    Castaño-Ortiz JM; Romero F; Cojoc L; Barceló D; Balcázar JL; Rodríguez-Mozaz S; Santos LHMLM
    Environ Pollut; 2024 Mar; 344():123369. PubMed ID: 38253165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkali-catalyzed hydrothermal oxidation treatment of triclosan in soil: Mechanism, degradation pathway and toxicity evaluation.
    Chen Y; Shi R; Luo H; Zhang R; Hu Y; Xie H; Zhu NM
    Sci Total Environ; 2023 Jan; 856(Pt 2):159187. PubMed ID: 36202363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan.
    Wang L; Xu S; Pan B; Yang Y
    Environ Sci Process Impacts; 2017 Apr; 19(4):499-506. PubMed ID: 28290573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4.
    Tian H; Ma YJ; Li WY; Wang JW
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8963-8975. PubMed ID: 29332277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community dynamic shifts associated with sulfamethoxazole degradation in microbial fuel cells.
    Xie B; Liang H; You H; Deng S; Yan Z; Tang X
    Chemosphere; 2021 Jul; 274():129744. PubMed ID: 33540308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of triclosan in laboratory-scale activated sludge reactors - Effect of culture acclimation.
    Orhon AK; Orhon KB; Yetis U; Dilek FB
    J Environ Manage; 2018 Jun; 216():320-327. PubMed ID: 28779976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of organic matters and nitrogenous pollutants simultaneously from two different wastewaters using biocathode microbial fuel cell.
    Sevda S; Sreekrishnan TR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Sep; 49(11):1265-75. PubMed ID: 24967560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.