These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38637064)

  • 1. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus.
    Gasser C; Faurie JM; Rul F
    Food Microbiol; 2024 Aug; 121():104487. PubMed ID: 38637064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-utilization of saccharides in mixtures: Moving toward a new understanding of carbon metabolism in Streptococcus thermophilus.
    Gasser C; Garault P; Chervaux C; Monnet V; Faurie JM; Rul F
    Food Microbiol; 2022 Oct; 107():104080. PubMed ID: 35953189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar.
    van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM
    J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3.
    Xiong ZQ; Kong LH; Lai PF; Xia YJ; Liu JC; Li QY; Ai LZ
    J Dairy Sci; 2019 Jun; 102(6):4925-4934. PubMed ID: 30928267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation.
    Song X; Hou C; Yang Y; Ai L; Xia Y; Wang G; Yi H; Xiong Z
    J Sci Food Agric; 2022 Aug; 102(11):4820-4829. PubMed ID: 35229301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus.
    Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E
    Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS.
    Boulay M; Al Haddad M; Rul F
    Int J Food Microbiol; 2020 Dec; 335():108903. PubMed ID: 33065381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Streptococcus thermophilus, Ammonia from Urea Hydrolysis Paradoxically Boosts Acidification and Reveals a New Regulatory Mechanism of Glycolysis.
    Arioli S; Della Scala G; Martinović A; Scaglioni L; Mazzini S; Volonté F; Pedersen MB; Mora D
    Microbiol Spectr; 2022 Jun; 10(3):e0276021. PubMed ID: 35467410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats.
    Thomas M; Wrzosek L; Ben-Yahia L; Noordine ML; Gitton C; Chevret D; Langella P; Mayeur C; Cherbuy C; Rul F
    PLoS One; 2011; 6(12):e28789. PubMed ID: 22216112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Peptidomic and Metatranscriptomic Analyses Reveal Improved Gamma-Amino Butyric Acid Production Machinery in Levilactobacillus brevis Strain NPS-QW 145 Cocultured with Streptococcus thermophilus Strain ASCC1275 during Milk Fermentation.
    Xiao T; Yan A; Huang JD; Jorgensen EM; Shah NP
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short communication: Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease.
    Yu P; Li N; Geng M; Liu Z; Liu X; Zhang H; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2020 Jan; 103(1):166-171. PubMed ID: 31704010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Optimisation of HILIC-LC-MS Method for Determination of Carbohydrates in Fermentation Samples.
    Pismennõi D; Kiritsenko V; Marhivka J; Kütt ML; Vilu R
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii ssp. bulgaricus 2038 and Streptococcus thermophilus 1131.
    Yamamoto E; Watanabe R; Ichimura T; Ishida T; Kimura K
    J Dairy Sci; 2021 Feb; 104(2):1454-1464. PubMed ID: 33309355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of the lactose transporter from Streptococcus thermophilus is increased by phosphorylated IIA and the action of beta-galactosidase.
    Geertsma ER; Duurkens RH; Poolman B
    Biochemistry; 2005 Dec; 44(48):15889-97. PubMed ID: 16313191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Lactose, Glucose, and Galactose by a Mixed Culture of Streptococcus thermophilus and Lactobacillus bulgaricus in Milk Treated with Lactase Enzyme.
    O'leary VS; Woychik JH
    Appl Environ Microbiol; 1976 Jul; 32(1):89-94. PubMed ID: 16345167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to Streptococcus thermophilus.
    Jans C; Gerber A; Bugnard J; Njage PM; Lacroix C; Meile L
    Food Microbiol; 2012 Aug; 31(1):33-42. PubMed ID: 22475940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a milk-based medium for the selection of urease-defective mutants of Streptococcus thermophilus.
    Scala GD; Volontè F; Ricci G; Pedersen MB; Arioli S; Mora D
    Int J Food Microbiol; 2019 Nov; 308():108304. PubMed ID: 31425789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.